Alpha-Galactosidase Microplate Assay Kit User Manual Catalog # FTA0097 (Version 1.2F) Detection and Quantification of Alpha-Galactosidase (α -GAL) Activity in Tissue extracts, Cell lysate, Cell culture media and Other biological fluids Samples. For research use only. Not for diagnostic or therapeutic procedures. | I. INTRODUCTION | 2 | |--|---| | II. KIT COMPONENTS | 3 | | III. MATERIALS REQUIRED BUT NOT PROVIDED | 3 | | IV. SAMPLE PREPARATION | 4 | | V. ASSAY PROCEDURE | 5 | | VI. CALCULATION | 6 | | VII. TYPICAL DATA | 7 | | VIII. TECHNICAL SUPPORT | 7 | | IX NOTES | 7 | #### I. INTRODUCTION Alpha-galactosidase is a glycoside hydrolase enzyme that hydrolyses the terminal alpha-galactosyl moieties from glycolipids and glycoproteins. It is encoded by the GLA gene. Two recombinant forms of alpha-galactosidase are called agalsidase alfa (INN) and agalsidase beta (INN). This enzyme is a homodimeric glycoprotein that hydrolyses the terminal alpha-galactosyl moieties from glycolipids and glycoproteins. It predominantly hydrolyzes ceramide trihexoside, and it can catalyze the hydrolysis of melibiose into galactose and glucose. The assay is initiated with the enzymatic hydrolysis of the glucoside by α -Galactosidase. The enzyme catalysed reaction products p-nitrophenol, can be measured at a colorimetric readout at 405 nm. # **II. KIT COMPONENTS** | Component | Volume | Storage | | |-----------------------|------------|---------|--| | 96-Well Microplate | 1 plate | | | | Assay Buffer | 30 ml x 4 | 4 °C | | | Reaction Buffer | 5 ml x 1 | 4 °C | | | Substrate | Powder x 1 | -20 °C | | | Stop Solution | 15 ml x 1 | 4 °C | | | Standard (1 mmol/L) | 1 ml x 1 | 4 °C | | | Plate Adhesive Strips | 3 Strips | | | | Technical Manual | 1 Manual | | | ## Note: Substrate: Add 2 ml Reaction Buffer to dissolve before use. # III. MATERIALS REQUIRED BUT NOT PROVIDED - 1. Microplate reader to read absorbance at 405 nm - 2. Distilled water - 3. Pipettor, multi-channel pipettor - 4. Pipette tips - 5. Mortar - 6. Centrifuge - 7. Timer - 8. Ice #### IV. SAMPLE PREPARATION ## 1. For cell and bacteria samples Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonication 3s, intervation 10s, repeat 30 times); centrifuged at 10,000g 4 °C for 20 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection. # 2. For tissue samples Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer on ice, centrifuged at 10,000g 4 °C for 20 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection. #### V. ASSAY PROCEDURE Add following reagents into the microplate: | Reagent | Sample | Control | Standard | Blank | | | |--|--------|---------|----------|--------|--|--| | Sample | 10 μΙ | | | | | | | Distilled water | | 10 μΙ | | | | | | Substrate | 20 μΙ | 20 μΙ | | | | | | Reaction Buffer | 20 μΙ | 20 μΙ | | | | | | Mix, put it in the oven, 37 °C for 30 minutes. | | | | | | | | Standard | | | 50 μΙ | | | | | Stop Solution | 150 μΙ | 150 μΙ | 150 μΙ | 200 μΙ | | | | Mix, record absorbance measured at 405 nm. | | | | | | | ## Note: - 1) Perform 2-fold serial dilutions of the top standards to make the standard curve. - 2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time. #### VI. CALCULATION **Unit Definition:** One unit of α -Galactosidase activity is defined as the enzyme generates 1 μ mol of p-nitrophenol per hour. 1. According to the protein concentration of sample $$\alpha$$ -GAL (U/mg) = (Cstandard × Vstandard) × (ODsample - ODcontrol) / (ODstandard - ODBlank) / $$(C_{Protein} \times V_{Sample}) / T$$ = $10 \times (OD_{Sample} - OD_{Control}) / (OD_{Standard} - OD_{Blank}) / C_{Protein}$ 2. According to the weight of sample $$\begin{array}{l} \alpha\text{-}\mathsf{GAL}\;(\mathsf{U/g}) = \left(\mathsf{C}_{\mathsf{Standard}} \times \mathsf{V}_{\mathsf{Standard}}\right) \times \left(\mathsf{OD}_{\mathsf{Sample}} - \mathsf{OD}_{\mathsf{Control}}\right) / \left(\mathsf{OD}_{\mathsf{Standard}} - \mathsf{OD}_{\mathsf{Blank}}\right) / \\ \\ \left(\mathsf{V}_{\mathsf{Sample}} \times \mathsf{W} / \mathsf{V}_{\mathsf{Assay}}\right) / T \\ \\ = 10 \times \left(\mathsf{OD}_{\mathsf{Sample}} - \mathsf{OD}_{\mathsf{Control}}\right) / \left(\mathsf{OD}_{\mathsf{Standard}} - \mathsf{OD}_{\mathsf{Blank}}\right) / \mathsf{W} \end{array}$$ 3. According to the quantity of cells or bacteria $$\begin{array}{l} \alpha\text{-}\mathsf{GAL}\;(\mathsf{U}/10^4) = \left(\mathsf{C}_{\mathsf{Standard}} \times \mathsf{V}_{\mathsf{Standard}}\right) \times \left(\mathsf{OD}_{\mathsf{Sample}} - \mathsf{OD}_{\mathsf{Control}}\right) / \left(\mathsf{OD}_{\mathsf{Standard}} - \mathsf{OD}_{\mathsf{Blank}}\right) / \\ \\ \left(\mathsf{V}_{\mathsf{Sample}} \times \mathsf{N} / \mathsf{V}_{\mathsf{Assay}}\right) / \mathsf{T} \\ \\ = 10 \times \left(\mathsf{OD}_{\mathsf{Sample}} - \mathsf{OD}_{\mathsf{Control}}\right) / \left(\mathsf{OD}_{\mathsf{Standard}} - \mathsf{OD}_{\mathsf{Blank}}\right) / \mathsf{N} \end{array}$$ C_{Protein}: the protein concentration, mg/ml; $C_{Standard}$: the concentration of Standard, 1 mmol/L = 1 μ mol/ml; W: the weight of sample, g; N: the quantity of cell or bacteria, $N \times 10^4$; V_{Standard}: the volume of standard, 0.05 ml; V_{Sample}: the volume of sample, 0.01 ml; V_{Assay}: the volume of Assay buffer, 1 ml; T: the reaction time, 0.5 hour. The standard curve is for demonstration only. A standard curve must be run with each assay. Detection Range: 10 μmol/L - 1000 μmol/L ## VIII. TECHNICAL SUPPORT For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com ### IX. NOTES