

D-Xylose Microplate Assay Kit User Manual

Catalog # FTA0215

(Version 2.1B)

Detection and Quantification of D-Xylose Content in Urine, Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media, Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	3
III. MATERIALS REQUIRED BUT NOT PROVIDED	3
IV. SAMPLE PREPARATION	4
V. ASSAY PROCEDURE	5
VI. CALCULATION	6
VII. TYPICAL DATA	7
VIII. TECHNICAL SUPPORT	7
IX. NOTES	7

I. INTRODUCTION

In nature, D-xylose occurs mainly in the polysaccharide form as xylan, arabinoxylan, glucuronoarabinoxylan, xyloglucan and xylogalacturonan. Mixed linkage D-xylans are also found in certain seaweed species and a similar polysaccharide is thought to make up the backbone of psyllium gum. In humans, D-xylose is used in an absorption test to help diagnose problems that prevent the small intestine from absorbing nutrients, vitamins and minerals in food. D-Xylose is normally easily absorbed by the intestine. When problems with absorption occur, D-xylose is not absorbed and blood and urine levels are low. A D-xylose test can help to determine the cause of a child's failure to gain weight, especially when the child seems to be eating enough food. If, in a polysaccharide, the ratio of D-xylose to other sugars etc. is known, then the amount of the polysaccharide can be quantified from this knowledge plus the determined concentration of D-xylose in an acid hydrolysate. Xylans are a major portion of the polysaccharides that could potentially be hydrolysed to fermentable sugar for biofuel production.

D-Xylose Microplate Assay Kit provides a convenient tool for sensitive detection of D-Xylose in a variety of samples. D-xylose is oxidised by NAD+ to D-xylonic acid in the presence of xylose dehydrogenase. D-Xylose is measured by the increase in absorbance at 570 nm.

II. KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30 ml x 4	4 °C
Reaction Buffer	10 ml x 1	4 °C
Coenzyme	Powder x 1	-20 °C
Enzyme	0.1 ml x 1	4 °C
Dye Reagent	Powder x 1	4 °C
Standard	Powder x 1	4 °C
Plate Adhesive Strips	3 Strips	
Technical Manual	1 Manual	

Note:

Coenzyme: add 1 ml Reaction Buffer to dissolve before use.

Enzyme: add 1 ml Reaction Buffer to dissolve before use.

Dye Reagent: add 10 ml distilled water to dissolve before use.

Standard: add 1 ml distilled water to dissolve before use; then add 0.2 ml into 0.8 ml

distilled water, mix, the concentration will be 4 mmol/L.

III. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 570 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer

IV. SAMPLE PREPARATION

1. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonication 3s, intervation 10s, repeat 30 times); centrifuged at 10000g 4 °C for 15 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer, centrifuged at 10000g 4 °C for 15 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For serum or plasma samples

Detect directly.

V. ASSAY PROCEDURE

Add following reagents into the microplate:

Reagent	Sample	Standard	Blank		
Reaction Buffer	70 μΙ	70 μΙ	70 μΙ		
Sample	10 μΙ				
Standard		10 μΙ			
Assay Buffer			10 μΙ		
Coenzyme	10 μΙ	10 μΙ	10 μΙ		
Enzyme	10 μΙ	10 μΙ	10 μΙ		
Mix, cover the plate adhesive strip, put the plate into the convection oven, incubate					
at 37 °C for 10 minutes.					
Dye Reagent	100 μΙ	100 μΙ	100 μΙ		
Mix, measured at 570 nm immediately and record the absorbance.					

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) The concentrations can vary over a wide range depending on the different samples. For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range.

VI. CALCULATION

1. According to the weight of sample

D-Xylose (
$$\mu$$
mol/g) = (C_{Standard} × V_{Standard}) × (OD_{Sample} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / (W × V_{Sample} / V_{Assay})
$$= 4 \times (ODSample - ODBlank) / (ODStandard - ODBlank) / W$$

2. According to the volume of sample

D-Xylose (
$$\mu$$
mol/ml) = (C_{Standard} × V_{Standard}) × (OD_{Sample} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / V_{Sample} = 4 × (OD_{Sample} - OD_{Blank}) / (OD_{Standard} - OD_{Blank})

 $C_{Standard}$: the concentration of standard, 4 mmol/L = 4 μ mol/ml;

W: the weight of sample, g;

V_{Standard}: the volume of standard, 0.01 ml;

V_{Sample}: the volume of sample, 0.01 ml;

V_{Assay}: the volume of Assay Buffer, 1 ml.

VII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 0.04 mmol/L - 4 mmol/L

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES