

Anti-SMARCC1 Antibody (2A4-H7-C12)

Mouse Monoclonal Antibody Catalog # ABV12046

Product Information

Application WB **Primary Accession** 092922 Reactivity Human Host Mouse Clonality Monoclonal Isotype Mouse IgG1 **Clone Names** 2A4-H7-C12 **Calculated MW** 122867

Additional Information

Gene ID 6599

Application & Usage

Other Names

WB: K562, Jurkat and HeLa cell lysates

BRG1-associated factor 155, BAF155, SWI/SNF complex 155 kDa subunit, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin

subfamily C member 1

Target/Specificity SMARCC1

Antibody Form Liquid

Appearance Colorless liquid

Formulation In PBS (pH 7.4) containing with 0.02% sodium azide and 50% glycerol

Handling The antibody solution should be gently mixed before use.

Reconstitution & Storage -20 °C

Background Descriptions

Precautions

Anti-SMARCC1 Antibody (2A4-H7-C12) is for research use only and not for use

in diagnostic or therapeutic procedures.

Protein Information

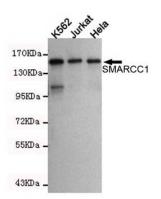
Name SMARCC1 (HGNC:11104)

Synonyms BAF155

Function Involved in transcriptional activation and repression of select genes by

chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity).

Cellular Location Nucleus. Cytoplasm


Tissue Location Expressed in brain, heart, muscle, placenta, lung, liver, muscle, kidney and

pancreas

Background

Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). May stimulate the ATPase activity of the catalytic subunit of the complex. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes.

Images

Western blot detection of SMARCC1 in K562, Jurkatand HeLa cell lysates using SMARCC1 mouse mAb

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.