

NF Kappa B/p50 Antibody

Mouse Monoclonal Antibody (Mab) Catalog # AD80301

Product Information

Application IHC **Primary Accession** P19838 Reactivity Human Host Mouse Clonality Monoclonal Isotype IgG2a **Clone Names** 658A5B3 Calculated MW 105356

Additional Information

Gene ID 4790 Gene Name NFKB1

Other Names Nuclear factor NF-kappa-B p105 subunit, DNA-binding factor KBF1, EBP-1,

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, Nuclear

factor NF-kappa-B p50 subunit, NFKB1

Dilution IHC~~1:100~500

Storage Maintain refrigerated at 2-8°C.

Precautions NF Kappa B/p50 Antibody is for research use only and not for use in

diagnostic or therapeutic procedures.

Protein Information

Name NFKB1

Function NF-kappa-B is a pleiotropic transcription factor present in almost all cell

types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain- containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex

NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well

as by interactions with other cofactors or corepressors. NF-kappa-B

complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I- kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally, p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105.

Cellular Location

[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.