

EIF4E Antibody

Mouse Monoclonal Antibody (Mab) Catalog # AM1852B

Product Information

Application WB, IF, E
Primary Accession P06730
Other Accession NP_001959.1
Reactivity Human, Mouse, Rat

Host Mouse
Clonality Monoclonal
Isotype IgG1,K
Clone Names 163CT48.1.9
Calculated MW 25097

Additional Information

Gene ID 1977

Other Names Eukaryotic translation initiation factor 4E, eIF-4E, eIF-4F 25 kDa subunit,

mRNA cap-binding protein, EIF4E, EIF4EL1, EIF4F

Target/Specificity This EIF4E monoclonal antibody is generated from mouse immunized with

EIF4E recombinant protein.

Dilution WB~~1:100~500 IF~~1:10~50 E~~Use at an assay dependent concentration.

Format Purified monoclonal antibody supplied in PBS with 0.09% (W/V) sodium azide.

This antibody is purified through a protein G column, followed by dialysis

against PBS.

Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions EIF4E Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.

Protein Information

Name EIF4E (HGNC:3287)

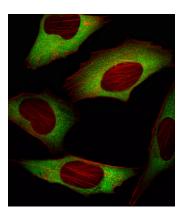
Synonyms EIF4EL1, EIF4F

Function Acts in the cytoplasm to initiate and regulate protein synthesis and is

required in the nucleus for export of a subset of mRNAs from the nucleus to the cytoplasm which promotes processes such as RNA capping, processing

and splicing (PubMed: 11606200, PubMed: 22578813, PubMed: 22684010, PubMed: <u>24335285</u>, PubMed: <u>29987188</u>). Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). This protein recognizes and binds the 7-methylguanosine (m7G)-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (PubMed: 16271312, PubMed: 22578813). Together with EIF4G1, antagonizes the scanning promoted by EIF1-EIF4G1 and is required for TISU translation, a process where the TISU element recognition makes scanning unnecessary (PubMed: 29987188). In addition to its role in translation initiation, also acts as a regulator of translation and stability in the cytoplasm (PubMed: 24335285). Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression: in the complex, EIF4E mediates the binding to the mRNA cap (By similarity). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). In P-bodies, component of a complex that mediates the storage of translationally inactive mRNAs in the cytoplasm and prevents their degradation (PubMed: <u>24335285</u>). May play an important role in spermatogenesis through translational regulation of stage-specific mRNAs during germ cell development (By similarity). As well as its roles in translation, also involved in mRNA nucleocytoplasmic transport (By similarity). Its role in mRNA export from the nucleus to the cytoplasm relies on its ability to bind the m7G cap of RNAs and on the presence of the 50-nucleotide EIF4E sensitivity element (4ESE) in the 3'UTR of sensitive transcripts (By similarity). Interaction with the 4ESE is mediated by LRPPRC which binds simultaneously to both EIF4E and the 4ESE, thereby acting as a platform for assembly for the RNA export complex (By similarity). EIF4E-dependent mRNA export is independent of ongoing protein or RNA synthesis and is also NFX1-independent but is XPO1-dependent with LRPPRC interacting with XPO1 to form an EIF4E- dependent mRNA export complex (By similarity). Alters the composition of the cytoplasmic face of the nuclear pore to promote RNA export by reducing RANBP2 expression, relocalizing nucleoporin NUP214 and increasing expression of RANBP1 and RNA export factors DDX19 and GLE1 (By similarity). Promotes the nuclear export of cyclin CCND1 mRNA (By similarity). Promotes the nuclear export of NOS2/iNOS mRNA (PubMed: 23471078). Promotes the nuclear export of MDM2 mRNA (PubMed: 22684010). Promotes the export of additional mRNAs, including others involved in the cell cycle (By similarity). In the nucleus, binds to capped splice factor-encoding mRNAs and stimulates their nuclear export to enhance splice factor production by increasing their cytoplasmic availability to the translation machinery (By similarity). May also regulate splicing through interaction with the spliceosome in an RNA and m7G cap-dependent manner (By similarity). Also binds to some pre-mRNAs and may play a role in their recruitment to the spliceosome (By similarity). Promotes steady-state capping of a subset of coding and non-coding RNAs by mediating nuclear export of capping machinery mRNAs including RNMT, RNGTT and RAMAC to enhance their translation (By similarity). Stimulates mRNA 3'-end processing by promoting the expression of several core cleavage complex factors required for mRNA cleavage and polyadenylation, and may also have a direct effect through its interaction with the CPSF3 cleavage enzyme (By similarity). Rescues cells from apoptosis by promoting activation of serine/threonine- protein kinase AKT1 through mRNA export of NBS1 which potentiates AKT1 phosphorylation and also through mRNA export of AKT1 effectors, allowing for increased production of these proteins (By similarity).

Cellular Location


Cytoplasm, P-body. Cytoplasm. Cytoplasm, Stress granule. Nucleus. Nucleus speckle. Nucleus, nuclear body Note=Interaction with EIF4ENIF1/4E-T is required for localization to processing bodies (P-bodies) (PubMed:16157702,

PubMed:24335285, PubMed:25923732). Imported in the nucleus via interaction with EIF4ENIF1/4E-T via a piggy-back mechanism (PubMed:10856257) Sequestered in the nucleus by EIF4EBP1 and EIF4EBP2 (By similarity) {ECO:0000250 | UniProtKB:P63073, ECO:0000269 | PubMed:10856257, ECO:0000269 | PubMed:16157702, ECO:0000269 | PubMed:24335285, ECO:0000269 | PubMed:25923732}

Background

EIF4E recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures.

Images

Fluorescent image of Hela cell stained with EIF4E Antibody(Cat#AM1852b/SG101020AF). Hela cells were fixed with 4% PFA (20 min), permeabilized with Triton X-100 (0.1%, 10 min), then incubated with EIF4E primary antibody (1:25, 1 h at 37°C. For secondary antibody, Alexa Fluor® 488 conjugated donkey anti-mouse antibody (green) was used (1:400, 50 min at 37°C. Cytoplasmic actin was counterstained with Alexa Fluor® 555 (red) conjugated Phalloidin (7units/ml, 1 h at 37°C. EIF4E immunoreactivity is localized to Cytoplasm significantly.

Citations

• Multiple components of eIF4F are required for protein synthesis-dependent hippocampal long-term potentiation.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.