

MAPK3 Antibody (ascites)

Mouse Monoclonal Antibody (Mab) Catalog # AM1943a

Product Information

Application	WB, E
Primary Accession	<u>P27361</u>
Other Accession	<u>NP_001035145.1</u>
Reactivity	Human, Mouse
Host	Mouse
Clonality	Monoclonal
Isotype	IgG1
Clone Names	327CT18.1.2
Calculated MW	43136

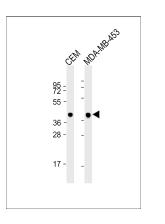
Additional Information

Gene ID	5595
Other Names	Mitogen-activated protein kinase 3, MAP kinase 3, MAPK 3, ERT2, Extracellular signal-regulated kinase 1, ERK-1, Insulin-stimulated MAP2 kinase, MAP kinase isoform p44, p44-MAPK, Microtubule-associated protein 2 kinase, p44-ERK1, MAPK3, ERK1, PRKM3
Target/Specificity	This MAPK3 monoclonal antibody is generated from mouse immunized with MAPK3 recombinant protein.
Dilution	WB~~1:100~8000 E~~Use at an assay dependent concentration.
Format	Mouse monoclonal antibody supplied in crude ascites with 0.09% (W/V) sodium azide.
Storage	Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
Precautions	MAPK3 Antibody (ascites) is for research use only and not for use in diagnostic or therapeutic procedures.

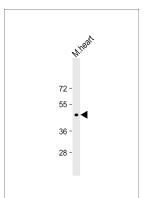
Protein Information

Name	МАРКЗ
Synonyms	ERK1, PRKM3
Function	Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed: <u>34497368</u>). MAPK1/ERK2 and

	MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DEPTOR, FRS2 or GRB10) (PubMed: <u>35216969</u>). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade.
Cellular Location	Cytoplasm {ECO:0000250 UniProtKB:P21708}. Nucleus. Membrane, caveola {ECO:0000250 UniProtKB:P21708}. Cell junction, focal adhesion {ECO:0000250 UniProtKB:Q63844} Note=Autophosphorylation at Thr-207 promotes nuclear localization (PubMed:19060905). PEA15-binding redirects the biological outcome of MAPK3 kinase-signaling by sequestering MAPK3 into the cytoplasm (By similarity). {ECO:0000250 UniProtKB:Q63844, ECO:0000269 PubMed:19060905}


Background

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals. This kinase is activated by upstream kinases, resulting in its translocation to the nucleus where it phosphorylates nuclear targets. Alternatively spliced transcript variants encoding different protein isoforms have been described.


References

Yotsumoto, F., et al. Cancer Sci. 101(11):2351-2360(2010) Arana-Argaez, V.E., et al. J. Biol. Chem. 285(43):32824-32833(2010) Collier, M.E., et al. Arterioscler. Thromb. Vasc. Biol. 30(9):1810-1817(2010) Lujan, B., et al. Br. J. Cancer 103(4):510-516(2010) Meng, S., et al. J Mol Cell Biol 2(4):223-230(2010)

Images

All lanes : Anti-MAPK3 Antibody (ascites) at 1:4000 dilution Lane 1: CEM whole cell lysate Lane 2: MDA-MB-453 whole cell lysate Secondary Goat Anti-mouse IgG, (H+L),Peroxidase conjugated at 1/10000 dilution. Predicted band size : 43136 Da Blocking/Dilution buffer: 5% NFDM/TBST.

Anti-MAPK3 Antibody (ascites) at 1:4000 dilution + mouse heart lysate Secondary Goat Anti-mouse IgG, (H+L),Peroxidase conjugated at 1/10000 dilution. Predicted band size : 43136 Da Blocking/Dilution buffer: 5% NFDM/TBST.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.