

# HMG2 Antibody (Ascites)

Mouse Monoclonal Antibody (Mab) Catalog # AM2077a

## **Product Information**

| Application       | WB, E                      |
|-------------------|----------------------------|
| Primary Accession | <u>P52926</u>              |
| Other Accession   | <u>P52927, NP_003474.1</u> |
| Reactivity        | Human                      |
| Predicted         | Mouse                      |
| Host              | Mouse                      |
| Clonality         | Monoclonal                 |
| Isotype           | IgG2b                      |
| •                 |                            |

#### **Additional Information**

| Gene ID            | 8091                                                                                                                                    |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Other Names        | High mobility group protein HMGI-C, High mobility group AT-hook protein 2,<br>HMGA2, HMGIC                                              |
| Target/Specificity | This HMG2 antibody is generated from mice immunized with a KLH conjugated synthetic peptide between 64-92 amino acids from human HMG2.  |
| Dilution           | WB~~1:500~8000 E~~Use at an assay dependent concentration.                                                                              |
| Format             | Mouse monoclonal antibody supplied in crude ascites with 0.09% (W/V) sodium azide.                                                      |
| Storage            | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
| Precautions        | HMG2 Antibody (Ascites) is for research use only and not for use in diagnostic or therapeutic procedures.                               |

#### **Protein Information**

| Name     | HMGA2                                                                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synonyms | HMGIC                                                                                                                                                 |
| Function | Functions as a transcriptional regulator. Functions in cell cycle regulation through CCNA2. Plays an important role in chromosome condensation during |

the meiotic G2/M transition of spermatocytes. Plays a role in postnatal myogenesis, is involved in satellite cell activation (By similarity). Positively regulates IGF2 expression through PLAG1 and in a PLAG1-independent manner (PubMed:<u>28796236</u>).

Cellular Location

Nucleus.

### Background

This gene encodes a protein that belongs to the non-histone chromosomal high mobility group (HMG) protein family. HMG proteins function as architectural factors and are essential components of the enhancesome. This protein contains structural DNA-binding domains and may act as a transcriptional regulating factor. Identification of the deletion, amplification, and rearrangement of this gene that are associated with myxoid liposarcoma suggests a role in adipogenesis and mesenchymal differentiation. A gene knock out study of the mouse counterpart demonstrated that this gene is involved in diet-induced obesity. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.

#### References

Markowski, D.N., et al. Cancer Genet. Cytogenet. 202(1):53-57(2010) Velagaleti, G.V., et al. Cancer Genet. Cytogenet. 202(1):11-16(2010) Bailey, S.D., et al. Diabetes Care 33(10):2250-2253(2010) Liu, Y., et al. Carcinogenesis 31(10):1762-1769(2010) Voight, B.F., et al. Nat. Genet. 42(7):579-589(2010)

#### Images



Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.