

Anti-GABAA Receptor ß2 Antibody

Our Anti-GABAA Receptor ß2 primary antibody from PhosphoSolutions is rabbit polyclonal. It detects m Catalog # AN1399

Product Information

Application	WB
Primary Accession	<u>P63138</u>
Host	Rabbit
Clonality	Polyclonal
Isotype	IgG
Calculated MW	54633

Additional Information

25451 GABA antibody, GABA(A) receptor beta 2 antibody, GABA(A) receptor subunit beta-2 antibody, GABA-A receptor, beta-2 polypeptide antibody, GABRB2 antibody, Gamma aminobutyric acid (GABA) A receptor, beta 2 antibody, Gamma aminobutyric acid A receptor beta 2 antibody, Gamma-aminobutyric acid receptor subunit beta-2 antibody, Gamma-aminobutyric-acid receptor subunit beta-2 antibody, GBRB2_HUMAN antibody
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a CI \Box channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunits results in the expression of functional GABA-A-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α - subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; P \Box tl et al., 2003).
WB~~1:1000
Antigen Affinity Purified
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
Anti-GABAA Receptor ß2 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Background

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a Cl \Box channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunits results in the expression of functional GABA-A-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α - subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; P \Box tl et al., 2003).

Images

Western blot of 7 μ g of rat cerebellar lysate showing specific immunolabeling of the ~55 kDa β 2-subunit of the GABAA-R.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.