

Anti-Potassium Channel, Voltage Gated, Kv2.2 Subunit Antibody

Our Anti-Potassium Channel, Voltage Gated, Kv2.2 Subunit rabbit polyclonal primary antibody from Pho Catalog # AN1521

Product Information

Application WB, IHC
Primary Accession Q63099
Host Rabbit
Clonality Polyclonal
Isotype IgG
Calculated MW 102096

Additional Information

Other Names delayed rectifier potassium channel protein antibody, KCNB2 antibody,

KCNB2_HUMAN antibody, potassium channel Kv2.2 antibody, potassium voltage gated channel subfamily B member 2 antibody, Potassium voltage-gated channel subfamily B member 2 antibody, Voltage-gated

potassium channel subunit Kv2.2 antibody

Target/Specificity Voltage-gated K+ channels are important determinants of neuronal

membrane excitability (Pongs, 1999). Moreover, differences in K+ channel expression patterns and densities contribute to the variations in action potential waveforms and repetitive firing patterns evident in different neuronal cell types. The delayed rectifier-type (IK)channels (Kv1.5, Kv2.1, and Kv2.2) are expressed on all neuronal somata and proximal dendrites and are also found in a wide variety of non-neuronal cells types including pancreatic islets, alveolar cells and cardiac myocytes (Hwang et al., 1993; Yan et al., 2004; Michaelevski et al., 2003). Kv2.1 and Kv2.2 form distinct populations of K+ channels and these subunits are thought to be primarily responsible for IK in superior cervical ganglion cells (Blaine and Ribera, 1998; Burger and Ribera,

1996).

Dilution WB~~1:1000 IHC~~1:100~500

Format Antigen Affinity Purified from Pooled Serum

Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions Anti-Potassium Channel, Voltage Gated, Kv2.2 Subunit Antibody is for

research use only and not for use in diagnostic or therapeutic procedures.

Shipping Blue Ice

Background

Voltage-gated K+ channels are important determinants of neuronal membrane excitability (Pongs, 1999). Moreover, differences in K+ channel expression patterns and densities contribute to the variations in action potential waveforms and repetitive firing patterns evident in different neuronal cell types. The delayed rectifier-type (IK)channels (Kv1.5, Kv2.1, and Kv2.2) are expressed on all neuronal somata and proximal dendrites and are also found in a wide variety of non-neuronal cells types including pancreatic islets, alveolar cells and cardiac myocytes (Hwang et al., 1993; Yan et al., 2004; Michaelevski et al., 2003). Kv2.1 and Kv2.2 form distinct populations of K+ channels and these subunits are thought to be primarily responsible for IK in superior cervical ganglion cells (Blaine and Ribera, 1998; Burger and Ribera, 1996).

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.