

Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody

Catalog # AN1673

Product Information

ApplicationWBPrimary AccessionP35221HostRabbit

Clonality Rabbit Polyclonal

Isotype IgG **Calculated MW** 100071

Additional Information

Gene ID 1495

Other Names alphaE-catenin, catenin alpha1, catenin

Target/Specificity α-catenins are cadherin interacting proteins with homology to vinculin. Three

α-catenin genes have been described including α1-catenin (αE-Catenin), α2-catenin (αN-catenin), and α3-catenin (αT-catenin). α1-catenin has 81% homology with α2-catenin and 60% homology with α3-catenin. These α-catenin isoforms may have similar roles since each binds cadherins. However, their expression patterns are both overlapping and distinct. α1-catenin was identified in epithelial cells, and is expressed in various cell types. α2-catenin is enriched in the nervous system, and α3-catenin is expressed highest in testis and heart. Phosphorylation may regulate the activity of α1-catenin, since tyrosine phosphorylation of Tyr-148 occurs during intercellular adhesion. This site is dephosphorylated by SHP2, which inhibits α1-catenin binding to β-catenin and translocation to the plasma membrane. Phosphorylation of α1-catenin at Tyr-148 may be important for inhibition of cell transformation, and dephosphorylation of this site may be important

during SHP2-mediated cell transformation.

Dilution WB~~1:1000

Format Antigen Affinity Purified

Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody is for research use only

and not for use in diagnostic or therapeutic procedures.

Shipping Blue Ice

Background

 α -catenins are cadherin interacting proteins with homology to vinculin. Three α -catenin genes have been described including α 1-catenin (α E-Catenin), α 2-catenin (α N-catenin), and α 3-catenin (α T-catenin).

has 81% homology with $\alpha 2$ -catenin and 60% homology with $\alpha 3$ -catenin. These α -catenin isoforms may have similar roles since each binds cadherins. However, their expression patterns are both overlapping and distinct. $\alpha 1$ -catenin was identified in epithelial cells, and is expressed in various cell types. $\alpha 2$ -catenin is enriched in the nervous system, and $\alpha 3$ -catenin is expressed highest in testis and heart. Phosphorylation may regulate the activity of $\alpha 1$ -catenin, since tyrosine phosphorylation of Tyr-148 occurs during intercellular adhesion. This site is dephosphorylated by SHP2, which inhibits $\alpha 1$ -catenin binding to β -catenin and translocation to the plasma membrane. Phosphorylation of $\alpha 1$ -catenin at Tyr-148 may be important for inhibition of cell transformation, and dephosphorylation of this site may be important during SHP2-mediated cell transformation.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.