Anti-Cdk1 (N-terminal region) Antibody Catalog # AN1713 ## **Product Information** **Application** WB, IHC, ICC, IP Primary Accession P06493 Host Mouse **Clonality** Mouse Monoclonal IsotypeIgG1Clone NamesM226Calculated MW34095 ## **Additional Information** Gene ID 983 Other Names Cdc2 **Target/Specificity** Cyclin-dependent kinases (Cdks) are a family of serine/threonine kinases that require association with regulatory subunits known as cyclins for activation. In addition, post-translational phosphorylation and dephosphorylation events regulate Cdk activity. Phosphorylation of Thr-160 in the T loop by Cdk-activating kinase (CAK) is an obligatory step in kinase activation. By contrast, phosphorylation of the Thr-14 and Tyr-15 residues by the Wee1 family of dual specificity kinases is inhibitory for the Cdks, and dephosphorylation of these residues by the Cdc25 family of phosphatases coincides with Cdk activation. Alternatively, Cdk5 appears to require different mechanisms for activation. This Cdk is activated through association with specific activators, including p35, p39, and p67. Cdk5 is primarily activated in neuronal cells, and only c-Abl kinase, rather than Wee family members, have been shown to phosphorylate Tyr-15 to regulate its activity. **Dilution** WB~~1:1000 IHC~~1:100~500 ICC~~N/A IP~~N/A Format Protein A Purified **Storage** Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions Anti-Cdk1 (N-terminal region) Antibody is for research use only and not for use in diagnostic or therapeutic procedures. **Shipping** Blue Ice ## **Background** Cyclin-dependent kinases (Cdks) are a family of serine/threonine kinases that require association with regulatory subunits known as cyclins for activation. In addition, post-translational phosphorylation and dephosphorylation events regulate Cdk activity. Phosphorylation of Thr-160 in the T loop by Cdk-activating kinase (CAK) is an obligatory step in kinase activation. By contrast, phosphorylation of the Thr-14 and Tyr-15 residues by the Wee1 family of dual specificity kinases is inhibitory for the Cdks, and dephosphorylation of these residues by the Cdc25 family of phosphatases coincides with Cdk activation. Alternatively, Cdk5 appears to require different mechanisms for activation. This Cdk is activated through association with specific activators, including p35, p39, and p67. Cdk5 is primarily activated in neuronal cells, and only c-Abl kinase, rather than Wee family members, have been shown to phosphorylate Tyr-15 to regulate its activity. Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.