

Anti-WAVE2 (Tyr-150) [conserved site], Phosphospecific Antibody

Catalog # AN2025

Product Information

Application	WB, ICC
Primary Accession	<u>Q9Y6W5</u>
Host	Rabbit
Clonality	Rabbit Polyclonal
Isotype	IgG
Calculated MW	54284

Additional Information

Gene ID Other Names	10163 Wiskott-Aldrich syndrome verproline, Scar2, WASF2
Dilution	WB~~1:1000 ICC~~N/A
Storage	Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
Precautions	Anti-WAVE2 (Tyr-150) [conserved site], Phosphospecific Antibody is for research use only and not for use in diagnostic or therapeutic procedures.
Shipping	Blue Ice

Background

The Wiskott–Aldrich syndrome protein (WASP) family is involved in various pathways that regulate actin cytoskeletal organization. This family includes WASP, N-WASP, and three WAVE/SCAR isoforms, WAVE1, 2, and 3. WAVE proteins play key roles in actin-mediated cell events, such as membrane ruffling and lamellipodia formation. WAVEs contain an N-terminal WAVE homology domain, a basic domain, a Proline-rich region, and carboxy terminal verprolin, cofilin, and acidic (VCA) region. WAVEs are thought to act downstream of the Rac GTPase, connecting Rac activation to induction of Arp 2/3-mediated actin polymerization. Regulation of WAVE activity can occur through tyrosine phosphorylation. Src phosphorylation of WAVE1 at Tyr-125 enhances binding to the Arp2/3 complex, and is required for WAVE inhibition of Arp2/3-mediated stress fiber formation. By contrast, WAVE2 phosphorylation of Tyr-150 by Abl may enhance Arp2/3 complex actin nucleation and microspike formation in fibroblasts. Thus, site-specific tyrosine phosphorylation may be important for controlling specific activities of WAVE proteins.

Images

with alkaline phosphatase (lanes 2 & 4). The blots were probed with anti-WAVE2 (Central region) (lanes 1 & 2) or anti-WAVE (Tyr-150) (lanes 3 & 4).

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.