

PPP1A Antibody

Purified Mouse Monoclonal Antibody Catalog # AO1352a

Product Information

Application WB, E **Primary Accession** P62136

Reactivity Human, Mouse

Host Mouse **Clonality** Monoclonal

Clone Names6D1IsotypeIgG1Calculated MW37512

Description The protein encoded by this gene is one of the three catalytic subunits of

protein phosphatase 1 (PP1). PP1 is a serine/threonine specific protein phosphatase known to be involved in the regulation of a variety of cellular processes, such as cell division, glycogen metabolism, muscle contractility, protein synthesis, and HIV-1 viral transcription. Increased PP1 activity has been observed in the end stage of heart failure. Studies in both human and mice suggest that PP1 is an important regulator of cardiac function. Mouse studies also suggest that PP1 functions as a suppressor of learning and memory. Three alternatively spliced transcript variants encoding different

isoforms have been found for this gene.

Immunogen Purified recombinant fragment of human PPP1A expressed in E. Coli.

Formulation Ascitic fluid containing 0.03% sodium azide.

Additional Information

Gene ID 5499

Other Names Serine/threonine-protein phosphatase PP1-alpha catalytic subunit, PP-1A,

3.1.3.16, PPP1CA, PPP1A

Dilution WB~~1/500 - 1/2000 E~~N/A

Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions PPP1A Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.

Protein Information

Name PPP1CA

Synonyms PPP1A

Function

Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets (PubMed: <u>28216226</u>, PubMed: <u>30158517</u>, PubMed: <u>35768504</u>, PubMed:35830882, PubMed:35831509, PubMed:36175670, PubMed:<u>39603239</u>, PubMed:<u>39603240</u>). Protein phosphatase 1 (PP1) is essential for cell division, transcription elongation, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670, PubMed:39603239, PubMed:39603240). Involved in regulation of ionic conductances and long-term synaptic plasticity. May play an important role in dephosphorylating substrates such as the postsynaptic density-associated Ca(2+)/calmodulin dependent protein kinase II. Catalytic component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation: the PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). PNUTS-PP1 also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed: 20516061). Regulates NEK2 function in terms of kinase activity and centrosome number and splitting, both in the presence and absence of radiation-induced DNA damage (PubMed: 17283141). Regulator of neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development (By similarity). In balance with CSNK1D and CSNK1E, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:21712997). May dephosphorylate CSNK1D and CSNK1E (PubMed:<u>21712997</u>). Dephosphorylates the 'Ser-418' residue of FOXP3 in regulatory T-cells (Treg) from patients with rheumatoid arthritis. thereby inactivating FOXP3 and rendering Treg cells functionally defective (PubMed: 23396208). Dephosphorylates CENPA (PubMed: 25556658). Dephosphorylates the 'Ser-139' residue of ATG16L1 causing dissociation of ATG12-ATG5-ATG16L1 complex, thereby inhibiting autophagy (PubMed: 26083323). Together with PPP1CC (PP1-gamma subunit), dephosphorylates IFIH1/MDA5 and RIG-I leading to their activation and a functional innate immune response (PubMed: 23499489). Core component of the SHOC2-MRAS-PP1c (SMP) holophosphatase complex that regulates the MAPK pathway activation (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). The SMP complex specifically dephosphorylates the inhibitory phosphorylation at 'Ser-259' of RAF1 kinase, 'Ser-365' of BRAF kinase and 'Ser-214' of ARAF kinase, stimulating their kinase activities (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). The SMP complex enhances the dephosphorylation activity and substrate specificity of PP1c (PubMed:35768504, PubMed:36175670).

Cellular Location

Cytoplasm. Nucleus. Nucleus, nucleoplasm. Nucleus, nucleolus Note=Primarily nuclear and largely excluded from the nucleolus. Highly mobile in cells and can be relocalized through interaction with targeting subunits. NOM1 plays a role in targeting this protein to the nucleolus. In the presence of PPP1R8 relocalizes from the nucleus to nuclear speckles. Shuttles toward the cytosol during infection with VEEV (PubMed:29769351).

References

1. EMBO J. 2007 Mar 21;26(6):1511-21. 2. J Biol Chem. 2007 Jun 15;282(24):17806-15. 3. Mol Cell. 2007 Jul 20;27(2):262-74.

Images

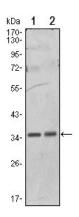


Figure 1: Western blot analysis using PPP1A mouse mAb against Hela (1) and NIH/3T3 (2) cell lysate.

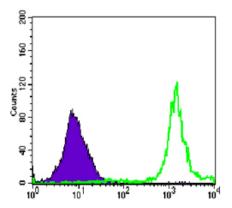


Figure 2: Flow cytometric analysis of Jurkat cells using anti-PARP mAb (green) and negative control (purple).

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.