PIK3CA Antibody Purified Mouse Monoclonal Antibody Catalog # AO1684a #### **Product Information** Application WB, FC, ICC, E Primary Accession P42336 Reactivity Human Host Mouse Clonality Monoclonal Clone Names 4F3 Isotype IgG1 Calculated MW 124284 **Description** Phosphatidylinositol 3-kinase is composed of an 85 kDa regulatory subunit and a 110 kDa catalytic subunit. The protein encoded by this gene represents the catalytic subunit, which uses ATP to phosphorylate PtdIns, PtdIns4P and PtdIns(4,5)P2. This gene has been found to be oncogenic and has been implicated in cervical cancers. **Immunogen** Purified recombinant fragment of human PIK3CA expressed in E. Coli. **Formulation** Purified antibody in PBS with 0.05% sodium azide ### **Additional Information** **Gene ID** 5290 Other Names Phosphatidylinositol 4, 5-bisphosphate 3-kinase catalytic subunit alpha isoform, PI3-kinase subunit alpha, PI3K-alpha, PI3Kalpha, PtdIns-3-kinase subunit alpha, 2.7.1.153, Phosphatidylinositol 4, 5-bisphosphate 3-kinase 110 kDa catalytic subunit alpha, PtdIns-3-kinase subunit p110-alpha, p110alpha, Phosphoinositide-3-kinase catalytic alpha polypeptide, Serine/threonine protein kinase PIK3CA, 2.7.11.1, PIK3CA Dilution WB~~1/500 - 1/2000 FC~~1/200 - 1/400 ICC~~N/A E~~1/10000 **Storage** Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. **Precautions** PIK3CA Antibody is for research use only and not for use in diagnostic or therapeutic procedures. ### **Protein Information** Name PIK3CA #### **Function** Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed: 15135396, PubMed: 23936502, PubMed:28676499). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed: 15135396, PubMed: 28676499). PIP3 plays a key role by recruiting PH domain- containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. In addition to its lipid kinase activity, it displays a serine-protein kinase activity that results in the autophosphorylation of the p85alpha regulatory subunit as well as phosphorylation of other proteins such as 4EBP1, H-Ras, the IL-3 beta c receptor and possibly others (PubMed:23936502, PubMed:28676499). Plays a role in the positive regulation of phagocytosis and pinocytosis (By similarity). ## References Cancer Res. 2009 Dec 1;69(23):8868-76. Diagn Mol Pathol. 2009 Dec;18(4):200-5. # **Images** Figure 1: Western blot analysis using PIK3CA mAb against human PIK3CA (AA: 881-1068) recombinant protein. (Expected MW is 47.4 kDa) Figure 2: Western blot analysis using PIK3CA mAb against HEK293 (1) and PIK3CA (AA: 881-1068)-hIgGFc transfected HEK293 (2) cell lysate. Figure 3: Immunofluorescence analysis of HeLa cells using PIK3CA mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Figure 4: Flow cytometric analysis of Jurkat cells using PIK3CA mouse mAb (green) and negative control (red). Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.