

HIST2H3C(27Ac) Antibody

Purified Mouse Monoclonal Antibody Catalog # AO2158a

Product Information

Application IHC, FC, E **Primary Accession Q71DI3** Reactivity Human Host Mouse Clonality Monoclonal **Clone Names** 2D7B3 Isotype IgG1 **Calculated MW** 15388

Description Histones are basic nuclear proteins that are responsible for the nucleosome

structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in a histone cluster on chromosome 1. This gene is one of four histone genes in the cluster that are duplicated; this record represents the telomeric copy.

Immunogen Synthesized peptide of human HIST2H3C (AA: ATKAARK(Ac)SAPATGGV).

Formulation Purified antibody in PBS with 0.05% sodium azide

Additional Information

Gene ID 126961;333932;653604

Other Names Histone H3.2, H3-clustered histone 13 {ECO:0000312 | HGNC:HGNC:25311},

H3-clustered histone 14 {ECO:0000312 | HGNC:HGNC:20503}, H3-clustered histone 15 {ECO:0000312 | HGNC:HGNC:20505}, Histone H3/m, Histone H3/o,

H3C15 (HGNC:20505)

Dilution IHC~~1/200 - 1/1000 FC~~1/200 - 1/400 E~~1/10000

Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions HIST2H3C(27Ac) Antibody is for research use only and not for use in

diagnostic or therapeutic procedures.

Protein Information

Name H3C15 (<u>HGNC:20505</u>)

Function Core component of nucleosome. Nucleosomes wrap and compact DNA into

chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications

of histones, also called histone code, and nucleosome remodeling.

Cellular Location Nucleus. Chromosome.

References

1.Cell Cycle. 2014;13(3):440-52. 2.Cell Cycle. 2009 Jun 1;8(11):1747-53.

Images

