

# NHEJ1 Antibody (C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14503b

# **Product Information**

| Application       | WB, E              |
|-------------------|--------------------|
| Primary Accession | <u>Q9H9Q4</u>      |
| Other Accession   | <u>NP_079058.1</u> |
| Reactivity        | Human              |
| Host              | Rabbit             |
| Clonality         | Polyclonal         |
| Isotype           | Rabbit IgG         |
| Clone Names       | RB34204            |
| Calculated MW     | 33337              |
| Antigen Region    | 268-296            |

# **Additional Information**

| Gene ID            | 79840                                                                                                                                                                              |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other Names        | Non-homologous end-joining factor 1, Protein cernunnos, XRCC4-like factor,<br>NHEJ1, XLF                                                                                           |
| Target/Specificity | This NHEJ1 antibody is generated from rabbits immunized with a KLH<br>conjugated synthetic peptide between 268-296 amino acids from the<br>C-terminal region of human NHEJ1.       |
| Dilution           | WB~~1:1000 E~~Use at an assay dependent concentration.                                                                                                                             |
| Format             | Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide.<br>This antibody is purified through a protein A column, followed by peptide<br>affinity purification. |
| Storage            | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.                                            |
| Precautions        | NHEJ1 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.                                                                          |

#### **Protein Information**

| Name     | NHEJ1 {ECO:0000303 PubMed:17191205, ECO:0000312 HGNC:HGNC:25737}                                                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed: <u>16439204</u> , |

|                   | PubMed:16439205, PubMed:17317666, PubMed:17470781,<br>PubMed:17717001, PubMed:18158905, PubMed:28369633). Plays a key role in<br>NHEJ by promoting the ligation of various mismatched and non-cohesive ends<br>(PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with<br>PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of<br>non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in<br>concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt<br>ends and several types of mismatched ends that are non- complementary or<br>partially complementary (PubMed:16439204, PubMed:16439205,<br>PubMed:17317666, PubMed:17470781). In some studies, has been shown to<br>associate with XRCC4 to form alternating helical filaments that bridge DNA<br>and act like a bandage, holding together the broken DNA until it is repaired<br>(PubMed:21768349, PubMed:21775435, PubMed:22228831,<br>PubMed:22287571, PubMed:26100018, PubMed:27437582,<br>PubMed:228500754). Alternatively, it has also been shown that rather than<br>forming filaments, a single NHEJ1 dimer interacts through both head domains<br>with XRCC4 to promote the close alignment of DNA ends (By similarity). The<br>XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a<br>highly diffusive manner and robustly bridges two independent DNA<br>molecules, holding the broken DNA fragments in close proximity to one other<br>(PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures<br>that the ends remain accessible for further processing by other repair factors<br>(PubMed:27437582). Binds DNA in a length-dependent manner<br>(PubMed:17317666, PubMed:18158905). |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cellular Location | Nucleus. Chromosome. Note=Localizes to site of double-strand breaks;<br>recruitment is dependent on XRCC5-XRCC6 (Ku) heterodimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tissue Location   | Ubiquitously expressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## Background

Double-strand breaks in DNA result from genotoxic stresses and are among the most damaging of DNA lesions. This gene encodes a DNA repair factor essential for the nonhomologous end-joining pathway, which preferentially mediates repair of double-stranded breaks. Mutations in this gene cause different kinds of severe combined immunodeficiency disorders.

## References

Malivert, L., et al. J. Biol. Chem. 285(34):26475-26483(2010) Briggs, F.B., et al. Am. J. Epidemiol. 172(2):217-224(2010) Okada, Y., et al. Hum. Mol. Genet. 19(11):2303-2312(2010) Andres, S.N., et al. Mol. Cell 28(6):1093-1101(2007) Tsai, C.J., et al. Proc. Natl. Acad. Sci. U.S.A. 104(19):7851-7856(2007)

#### Images

NHEJ1 Antibody (C-term) (Cat. #AP14503b) western blot analysis in Hela cell line lysates (35ug/lane).This demonstrates the NHEJ1 antibody detected the NHEJ1 protein (arrow).

| Hela       | a |
|------------|---|
| 95<br>72 - |   |
| 55         |   |
| 36         |   |
| 28         | • |

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.