

ATG3 Antibody (C-term K183)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP1807c

Product Information

Application	WB, E
Primary Accession	<u>Q9NT62</u>
Other Accession	<u>Q0VCL3</u>
Reactivity	Human, Mouse
Predicted	Bovine
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	35864
Antigen Region	168-197

Additional Information

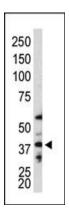
Gene ID	64422
Other Names	Ubiquitin-like-conjugating enzyme ATG3, 632-, Autophagy-related protein 3, APG3-like, hApg3, Protein PC3-96, ATG3, APG3, APG3L
Target/Specificity	This ATG3 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 168-197 amino acids from the C-terminal region of human ATG3.
Dilution	WB~~1:1000 E~~Use at an assay dependent concentration.
Format	Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.
Storage	Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
Precautions	ATG3 Antibody (C-term K183) is for research use only and not for use in diagnostic or therapeutic procedures.

Protein Information

Name	ATG3 (<u>HGNC:20962</u>)
Synonyms	APG3, APG3L
Function	E2 conjugating enzyme that catalyzes the covalent conjugation of the

	C-terminal Gly of ATG8-like proteins (GABARAP, GABARAPL1, GABARAPL2 or MAP1LC3A) to the amino group of phosphatidylethanolamine (PE)-containing lipids in the membrane resulting in membrane-bound ATG8-like proteins which is one of the key steps in the development of autophagic isolation membranes during autophagosome formation (PubMed:24191030, PubMed:33446636, PubMed:37252361). Cycles back and forth between binding to ATG7 for loading with the ATG8-like proteins and binding to E3 enzyme, composed of ATG12, ATG5 and ATG16L1 to promote ATG8-like proteins lipidation (PubMed:11825910, PubMed:12207896, PubMed:12890687, PubMed:16704426, PubMed:24186333). Also plays a role as a membrane curvature sensor that facilitates LC3/GABARAP lipidation by sensing local membrane stress associated with lipid-packing defects as occurs with high molar proportions of conical lipids or strident membrane curvature (By similarity). Interacts with negatively-charged membranes promoting membrane tethering and enhancing LC3/GABARAP lipidation (PubMed:29142222). Also acts as an autocatalytic E2-like enzyme by catalyzing the conjugation of ATG12 to itself in an ATG7-dependent manner, this complex thus formed, plays a role in mitochondrial homeostasis but not in autophagy (By similarity). ATG12- ATG3 conjugation promotes late endosome to lysosome trafficking and basal autophagosome maturation via its interaction with PDCDGIP (By similarity). ATG12-ATG3 conjugate is also formed upon viccina virus infection, leading to the disruption the cellular autophagy which is not necessary for vaccinia survival and proliferation (By similarity). Promotes primary ciliogenesis by removing OFD1 from centriolar satellites via the autophagic pathway (By similarity).
Cellular Location	Cytoplasm.
Tissue Location	Widely expressed, with a highest expression in heart, skeletal muscle, kidney, liver and placenta

Background


Macroautophagy is the major inducible pathway for the general turnover of cytoplasmic constituents in eukaryotic cells, it is also responsible for the degradation of active cytoplasmic enzymes and organelles during nutrient starvation. Macroautophagy involves the formation of double-membrane bound autophagosomes which enclose the cytoplasmic constituent targeted for degradation in a membrane bound structure, which then fuse with the lysosome (or vacuole) releasing a single-membrane bound autophagic bodies which are then degraded within the lysosome (or vacuole). APG3L is an E2-like conjugating enzyme facilitating covalent binding of APG8 (MAP1LC3) to phosphatidylethanolamine (PE). APG7 (an E1-like enzyme) facilitates this reaction by forming an E1-E2 complex with APG3. Formation of the PE conjugate is essential for autophagy.

References

Baehrecke EH. Nat Rev Mol Cell Biol. 6(6):505-10. (2005) Lum JJ, et al. Nat Rev Mol Cell Biol. 6(6):439-48. (2005) Greenberg JT. Dev Cell. 8(6):799-801. (2005) Levine B. Cell. 120(2):159-62. (2005) Shintani T and Klionsky DJ. Science. 306(5698):990-5. (2004)

Images

Human APG3L was detected using purified polyclonal antibody AP1807c in Western blot on mouse colon tissue lysate.

Citations

- ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics
- Human non Ismall cell lung cancer cells can be sensitized to camptothecin by modulating autophagy.
- ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.