Phospho-FGFR(Y766) Antibody Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3105a ### **Product Information** Application WB, IHC-P, E Primary Accession P11362 Other Accession <u>Q90Z00</u>, <u>Q04589</u>, <u>P16092</u>, <u>P21804</u> **Reactivity** Human, Rat, Mouse **Predicted** Chicken, Rat, Zebrafish Host Rabbit Clonality Polyclonal Isotype Rabbit IgG Calculated MW 91868 ## **Additional Information** Gene ID 2260 **Other Names** Fibroblast growth factor receptor 1, FGFR-1, Basic fibroblast growth factor receptor 1, BFGFR, bFGF-R-1, Fms-like tyrosine kinase 2, FLT-2, N-sam, Proto-oncogene c-Fgr, CD331, FGFR1, BFGFR, CEK, FGFBR, FLG, FLT2, HBGFR **Target/Specificity** This FGFR Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding Y766 of human FGFR. **Dilution** WB~~1:1000 IHC-P~~1:100~500 E~~Use at an assay dependent concentration. **Format** Purified polyclonal antibody supplied in PBS with 0.05% (V/V) Proclin 300. This antibody is purified through a protein A column, followed by peptide affinity purification. **Storage** Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. **Precautions** Phospho-FGFR(Y766) Antibody is for research use only and not for use in diagnostic or therapeutic procedures. ### **Protein Information** Name FGFR1 **Synonyms** BFGFR, CEK, FGFBR, FLG, FLT2, HBGFR **Function** Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation. #### **Cellular Location** Cell membrane; Single-pass type I membrane protein. Nucleus. Cytoplasm, cytosol. Cytoplasmic vesicle. Note=After ligand binding, both receptor and ligand are rapidly internalized. Can translocate to the nucleus after internalization, or by translocation from the endoplasmic reticulum or Golgi apparatus to the cytosol, and from there to the nucleus #### **Tissue Location** Detected in astrocytoma, neuroblastoma and adrenal cortex cell lines. Some isoforms are detected in foreskin fibroblast cell lines, however isoform 17, isoform 18 and isoform 19 are not detected in these cells. # **Background** FGFR is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds both acidic and basic fibroblast growth factors and is involved in limb induction. Mutations in this gene can lead to Pfeiffer syndrome and Jackson-Weiss syndrome. ### References Hu, Y., et al., J. Biol. Chem. 279(28):29325-29335 (2004). Ibrahimi, O.A., et al., Biochemistry 43(16):4724-4730 (2004). Sato, N., et al., J. Clin. Endocrinol. Metab. 89(3):1079-1088 (2004). Lundin, L., et al., Exp. Cell Res. 287(1):190-198 (2003). Jiao, J., et al., Arch. Biochem. Biophys. 410(2):187-200 (2003). # **Images** Western blot analysis of lysates from 293T/17 cell line, untreated or treated with insulin(0. 01U/ml, 30min), using Phospho-FGFR(Y766) Antibody(upper) or Tubulin (lower). Western blot analysis of lysates from 293T/17 cell line, untreated or treated with insulin(0. 01U/ml, 30min), using Phospho-FGFR(Y766) Antibody(upper) or Tubulin (lower). Western blot analysis of lysates from 293T/17 cell line, untreated or treated with insulin(0. 01U/ml, 30min), using Phospho-FGFR(Y766) Antibody(upper) or Tubulin (lower). Western blot analysis of lysates from 293T/17 cell line, untreated or treated with insulin(0. 01U/ml, 30min), using Phospho-FGFR(Y766) Antibody(upper) or Tubulin (lower). Western blot analysis of anti-Phospho-FGFR-Y766 Pab (AP3105a) in mouse cerebellum cell line lysate. Phospho-FGFR-Y766 (arrow) was detected using the purified Pab. Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma. # **Citations** • PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.