

Phospho-Raptor(S863) Antibody

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3495a

Product Information

Application WB, IHC-P, DB, E

Primary Accession Q8N122

Reactivity Human, Mouse, Rat

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 149038

Additional Information

Gene ID 57521

Other Names Regulatory-associated protein of mTOR, Raptor, p150 target of rapamycin

(TOR)-scaffold protein, RPTOR, KIAA1303, RAPTOR

Target/SpecificityThis Raptor Antibody is generated from rabbits immunized with a KLH

conjugated synthetic phosphopeptide corresponding to amino acid residues

surrounding S863 of human Raptor.

Dilution WB~~1:500 IHC-P~~1:100 DB~~1:500 E~~Use at an assay dependent

concentration.

Format Purified polyclonal antibody supplied in PBS with 0.05% (V/V) Proclin 300. This

antibody is purified through a protein A column, followed by peptide affinity

purification.

Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions Phospho-Raptor(S863) Antibody is for research use only and not for use in

diagnostic or therapeutic procedures.

Protein Information

Name RPTOR (HGNC:30287)

Function Component of the mechanistic target of rapamycin complex 1 (mTORC1), an

evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass

generation and growth (PubMed:<u>12150925</u>, PubMed:<u>12150926</u>, PubMed:<u>12747827</u>, PubMed:<u>24403073</u>, PubMed:<u>26588989</u>,

PubMed:32561715, PubMed:37541260). In response to nutrients, growth

factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed: 12747827, PubMed: 24403073, PubMed: 26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:<u>24403073</u>, PubMed:<u>32561715</u>, PubMed:<u>37541260</u>). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed: 12150925, PubMed: 12150926, PubMed: 12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif- containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity), mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity).

Cellular Location

Lysosome membrane. Cytoplasm Cytoplasmic granule. Note=Targeting to lysosomes depends on amino acid availability: recruited to lysosome membranes via interaction with GTP-bound form of RagA/RRAGA (or RagB/RRAGB) in complex with the GDP-bound form of RagC/RRAGC (or RagD/RRAGD), promoting recruitment of mTORC1 to the lysosomes (PubMed:31601708, PubMed:31601764). In arsenite-stressed cells, accumulates in stress granules when associated with SPAG5 and association with lysosomes is drastically decreased (PubMed:23953116).

Tissue Location

Highly expressed in skeletal muscle, and in a lesser extent in brain, lung, small intestine, kidney and placenta

Background

Raptor participates in the FRAP1 pathway and associates in a near stoichiometric ratio with FRAP1 to form a nutrient-sensitive complex (NSC). It plays a pivotal role as a scaffold protein in the FRAP1-signaling pathway and this interaction is essential for the catalyzed phosphorylation of EIF4EBP1. It has a positive role in nutrient-stimulated signaling to the downstream effector RPS6KB1. Under nutrient-deprived conditions, raptor serves as a negative regulator of FRAP1 kinase activity. Regulation of the interaction with FRAP1 is a critical mechanism by which cells coordinate the rate of cell growth and maintenance of cell size with different environmental conditions.

References

Wang, Y., Circ. Res. 101 (6), 560-569 (2007) Fuchs, B.C., Am. J. Physiol., Cell Physiol. 293 (1), C55-C63 (2007) Olsen, J.V., Cell 127 (3), 635-648 (2006)

Images

paraffin-embedded Human skeletal muscle tissue. Tissue was fixed with formaldehyde at room temperature. Heat induced epitope retrieval was performed by EDTA buffer (pH9. 0). Samples were incubated with primary antibody(1:100) for 1 hour at room temperature. Undiluted CRF Anti-Polyvalent HRP Polymer antibody was used as the secondary antibody.

Western blot analysis of lysates from Hela cell line, untreated or treated with TPA, 200nM, using Phospho-Raptor(S863) Antibody(upper) or tubulin (lower).

Citations

• A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.