10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.875.1999

MAP2K7 (Phospho-Thr275) Antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP52516

Product Information

Application WB Primary Accession 014733

Reactivity Human, Mouse, Rat

HostRabbitClonalityPolyclonalCalculated MW47485

Additional Information

Gene ID 5609

Other Names Dual specificity mitogen-activated protein kinase kinase 7, MAP kinase kinase

7, MAPKK 7, JNK-activating kinase 2, MAPK/ERK kinase 7, MEK 7,

Stress-activated protein kinase kinase 4, SAPK kinase 4, SAPKK-4, SAPKK4, c-Jun N-terminal kinase kinase 2, JNK kinase 2, JNKK 2, MAP2K7, JNKK2, MEK7,

MKK7, PRKMK7, SKK4

Dilution WB~~1:1000

Format Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4,

150mM NaCl, 0.09% (W/V) sodium azide and 50% glycerol.

Storage Conditions -20°C

Protein Information

Name MAP2K7

Synonyms JNKK2, MEK7, MKK7, PRKMK7, SKK4

Function Dual specificity protein kinase which acts as an essential component of the

MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly

activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and

MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the

Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the

Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074).

Cellular Location Nucleus. Cytoplasm.

Tissue Location Ubiquitous; with highest level of expression in skeletal muscle. Isoform 3 is

found at low levels in placenta, fetal liver, and skeletal muscle.

Background

Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by proinflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis.

References

Wu Z.,et al.Mol. Cell. Biol. 17:7407-7416(1997). Lu X.,et al.J. Biol. Chem. 272:24751-24754(1997). Foltz I.N.,et al.J. Biol. Chem. 273:9344-9351(1998). Michael L.,et al.Biochem. Biophys. Res. Commun. 341:679-683(2006). Yang J.,et al.Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.

Images

Western blot analysis of extracts from HeLa cells, treated with calyculinA (50ng/ml, 30mins), using MAP2K7 (Phospho-Thr275) antibody.

Western blot analysis of extracts from cos-7 cells (Lane 2) and 3T3 cells (Lane 3), using MAP2K7 (Phospho-Thr275) Antibody. The lane on the left is treated with synthesized

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.