

ATP5C1 Antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP53285

Product Information

ApplicationWBPrimary AccessionP36542ReactivityHumanHostRabbitClonalityPolyclonalCalculated MW32996

Additional Information

Gene ID 509

Other Names ATP synthase subunit gamma, mitochondrial, F-ATPase gamma subunit,

ATP5C1, ATP5C, ATP5CL1

Dilution WB~~ 1:1000

Format Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.09% (W/V)

sodium azide and 50% glycerol

Storage Store at -20 °C.Stable for 12 months from date of receipt

Protein Information

Name ATP5F1C (HGNC:833)

Function Subunit gamma, of the mitochondrial membrane ATP synthase complex

(F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the central stalk subunit delta, is essential for the biogenesis of F(1) catalytic part of the ATP synthase complex namely in the formation of F1 assembly intermediate

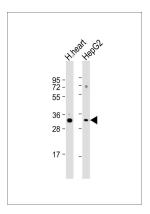
(PubMed: 29499186).

Cellular Location Mitochondrion inner membrane {ECO:0000250 | UniProtKB:P05631};

Peripheral membrane protein {ECO:0000250 | UniProtKB:P05631}; Matrix side {ECO:0000250 | UniProtKB:P05631}

Tissue Location

Isoform Heart is expressed specifically in the heart and skeletal muscle, which require rapid energy supply. Isoform Liver is expressed in the brain, liver and kidney. Isoform Heart and Isoform Liver are expressed in the skin, intestine, stomach and aorta


Background

Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and the central stalk which is part of the complex rotary element. The gamma subunit protrudes into the catalytic domain formed of alpha(3)beta(3). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.

References

Matsuda C.,et al.J. Biol. Chem. 268:24950-24958(1993).
Ota T.,et al.Nat. Genet. 36:40-45(2004).
Ebert L.,et al.Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
Deloukas P.,et al.Nature 429:375-381(2004).
Mural R.J.,et al.Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.

Images

All lanes: Anti-ATP5C1 Antibody at 1:1000 dilution Lane 1: human heart lysate Lane 2: HepG2 whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size: 33 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.