

HLA-C Rabbit pAb

HLA-C Rabbit pAb Catalog # AP54240

Product Information

Application IHC-P, IHC-F, IF

Primary Accession P10321 Host Rabbit Clonality Polyclonal **Calculated MW** 40649 **Physical State** Liquid

Immunogen KLH conjugated synthetic peptide derived from human HLA-C

Epitope Specificity 81-180/366

Isotype IgG

Purity affinity purified by Protein A

Buffer 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

SUBCELLULAR LOCATION Cell Membrane; Type I membrane protein.

SIMILARITY Belongs to the MHC class I family. Contains 1 Ig-like C1-type

(immunoglobulin-like) domain.

SUBUNIT Heterodimer of an alpha chain and a beta chain (beta-2-microglobulin).

Interacts with human herpesvirus 8 MIR1 protein. Interacts with HTLV-1 p12I

accessory protein.

Post-translational N-linked glycosylation at Asn-110 is required for efficient interaction with modifications

CANX and CALR chaperones and appropriate HLA-C-B2M folded conformers

is a heterodimer consisting of a heavy chain and a light chain (beta-2

prior to peptide loading

Important Note This product as supplied is intended for research use only, not for use in

human, therapeutic or diagnostic applications.

Background Descriptions HLA-C belongs to the HLA class I heavy chain paralogues. This class I molecule

> microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from endoplasmic reticulum lumen. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domain, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. About 6000 HLA-C alleles have been described. The HLA system plays an important role in the occurrence and outcome of infectious diseases, including those caused by the malaria parasite, the human immunodeficiency virus (HIV), and the severe acute respiratory

> syndrome coronavirus (SARS-CoV). The structural spike and the nucleocapsid proteins of the novel coronavirus SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19), are reported to contain multiple Class I epitopes with predicted HLA restrictions. Individual HLA genetic variation may help explain different immune responses to a virus across a population.[provided

Additional Information

Gene ID 3107

Other Names HLA class I histocompatibility antigen, C alpha chain, HLA-C, HLA-Cw, Human

leukocyte antigen C, HLA-C (HGNC:4933), HLAC

Dilution IHC-P=1:100-500,IHC-F=1:100-500,IF=1:100-500

Storage Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. When

reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody

is stable for at least two weeks at 2-4 °C.

Protein Information

Name HLA-C (HGNC:4933)

Synonyms HLAC

Function Antigen-presenting major histocompatibility complex class I (MHCI)

molecule with an important role in reproduction and antiviral immunity

(PubMed: 11172028, PubMed: 20104487, PubMed: 20439706, PubMed: 20972337, PubMed: 24091323, PubMed: 28649982,

PubMed: 29312307). In complex with B2M/beta 2 microglobulin displays a restricted repertoire of self and viral peptides and acts as a dominant ligand for inhibitory and activating killer immunoglobulin receptors (KIRs) expressed on NK cells (PubMed: 16141329). In an allogeneic setting, such as during

on NK cells (PubMed:16141329). In an allogeneic setting, such as during pregnancy, mediates interaction of extravillous trophoblasts with KIR on uterine NK cells and regulate trophoblast invasion necessary for placentation and overall fetal growth (PubMed:20972337, PubMed:24091323). During viral infection, may present viral peptides with low affinity for KIRs, impeding KIR-mediated inhibition through peptide antagonism and favoring lysis of

infected cells (PubMed: <u>20439706</u>). Presents a restricted repertoire of viral peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-C-restricted CD8-positive T cells, guiding

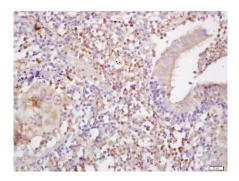
antigen-specific T cell immune response to eliminate infected cells, particularly in chronic viral infection settings such as HIV-1 or CMV infection (PubMed:11172028, PubMed:20104487, PubMed:28649982). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (By similarity). Typically presents intracellular peptide antigens of 9 amino acids that arise from cytosolic proteolysis via proteasome. Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9.

Preferentially displays peptides having a restricted repertoire of hydrophobic or aromatic amino acids (Phe, Ile, Leu, Met, Val and Tyr) at the C-terminal

anchor (PubMed:25311805, PubMed:8265661).

Cellular Location Cell membrane; Single-pass type I membrane protein. Endoplasmic reticulum

membrane; Single-pass membrane protein


Tissue Location Ubiquitous. Highly expressed in fetal extravillous trophoblasts in the decidua

basalis (at protein level)

Background

HLA-C belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from endoplasmic reticulum lumen. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domain, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. About 6000 HLA-C alleles have been described. The HLA system plays an important role in the occurrence and outcome of infectious diseases, including those caused by the malaria parasite, the human immunodeficiency virus (HIV), and the severe acute respiratory syndrome coronavirus (SARS-CoV). The structural spike and the nucleocapsid proteins of the novel coronavirus SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19), are reported to contain multiple Class I epitopes with predicted HLA restrictions. Individual HLA genetic variation may help explain different immune responses to a virus across a population. [provided by RefSeq, Aug 2020]

Images

Tissue/cell: human lung carcinoma; 4%
Paraformaldehyde-fixed and paraffin-embedded;
Antigen retrieval: citrate buffer (0.01M, pH 6.0), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37°C for 20 min; Incubation: Anti-HLA-C Polyclonal Antibody, Unconjugated(AP54240) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.