

H4-K20 Antibody (N-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP5660a

Product Information

Application	WB, E
Primary Accession	<u>P62805</u>
Reactivity	Human, Mouse
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Clone Names	RB17117
Calculated MW	11367
Antigen Region	1-30

Additional Information

Gene ID	121504;554313;8294;8359;8360;8361;8362;8363;8364;8365;8366;8367;8368; 8370
Other Names	Histone H4, HIST1H4A, H4/A, H4FA
Target/Specificity	This H4-K20 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 1-30 amino acids from the N-terminal region of human H4-K20.
Dilution	WB~~1:1000 E~~Use at an assay dependent concentration.
Format	Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.
Storage	Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
Precautions	H4-K20 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

Protein Information

Name	H4C1
Synonyms	H4/A, H4FA, HIST1H4A
Function	Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require

	DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Cellular Location	Nucleus {ECO:0000250 UniProtKB:P62806}. Chromosome. Note=Localized to the nucleus when acetylated in step 11 spermatids. {ECO:0000250 UniProtKB:P62806}

Background

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures.

References

Yan, D., et.al., Biochem. J. 408 (1), 113-121 (2007)

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.