

DLD Rabbit pAb

DLD Rabbit pAb Catalog # AP57025

Product Information

Application WB, IHC-P, IHC-F, IF

Primary Accession P09622

Reactivity Mouse, Dog, Horse, Sheep

Host Rabbit
Clonality Polyclonal
Calculated MW 54177
Physical State Liquid

Immunogen KLH conjugated synthetic peptide derived from human Lipoamide

Dehydrogenase

Epitope Specificity 241-340/509

Isotype IgG

Purity affinity purified by Protein A

Buffer 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

SUBCELLULAR LOCATION Mitochondrion matrix.

SIMILARITYBelongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. **Post-translational**Tyrosine phosphorylated.

modifications

DISEASE

Note=Defects in DLD are involved in the development of congenital infantile lactic acidosis. Defects in DLD are a cause of maple syrup urine disease (MSUD) [MIM:248600]. MSUD is characterized by mental and physical retardation, feeding problems and a maple syrup odor to the urine. The keto acids of the branched-chain amino acids are present in the urine, resulting

from a block in oxidative decarboxylation.

Important Note This product as supplied is intended for research use only, not for use in

human, therapeutic or diagnostic applications.

Background Descriptions This gene encodes a member of the class-I pyridine nucleotide-disulfide

oxidoreductase family. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct

functions. In homodimeric form, the encoded protein functions as a

dehydrogenase and is found in several multi-enzyme complexes that regulate energy metabolism. However, as a monomer, this protein can function as a protease. Mutations in this gene have been identified in patients with E3-deficient maple syrup urine disease and lipoamide dehydrogenase deficiency. Alternative splicing results in multiple transcript variants.

[provided by RefSeq, Jan 2014]

Additional Information

Gene ID 1738

Other Names Dihydrolipoyl dehydrogenase, mitochondrial, 1.8.1.4, Dihydrolipoamide

dehydrogenase, Glycine cleavage system L protein, DLD, GCSL, LAD, PHE3

Dilution WB=1:500-2000,IHC-P=1:100-500,IHC-F=1:100-500

Storage Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. When

reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody

is stable for at least two weeks at 2-4 °C.

Protein Information

Name DLD

Synonyms GCSL, LAD, PHE3

Function Lipoamide dehydrogenase is a component of the glycine cleavage system as

well as an E3 component of three alpha-ketoacid dehydrogenase complexes

(pyruvate-, alpha-ketoglutarate-, and branched- chain amino

acid-dehydrogenase complex) (PubMed: 15712224, PubMed: 16442803,

PubMed: 16770810, PubMed: 17404228, PubMed: 20160912,

PubMed: 20385101). The 2-oxoglutarate dehydrogenase complex is mainly active in the mitochondrion (PubMed: 29211711). A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl-CoA to histone succinyltransferase KAT2A (PubMed: 29211711). In monomeric form may have additional moonlighting

function as serine protease (PubMed: 17404228). Involved in the

hyperactivation of spermatazoa during capacitation and in the spermatazoal

acrosome reaction (By similarity).

Cellular Location Mitochondrion matrix. Nucleus. Cell projection, cilium, flagellum

{ECO:0000250 | UniProtKB:Q811C4}. Cytoplasmic vesicle, secretory vesicle, acrosome. Note=Mainly localizes in the mitochondrion. A small fraction localizes to the nucleus, where the 2- oxoglutarate dehydrogenase complex is

required for histone succinylation.

Background

This gene encodes a member of the class-I pyridine nucleotide-disulfide oxidoreductase family. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct functions. In homodimeric form, the encoded protein functions as a dehydrogenase and is found in several multi-enzyme complexes that regulate energy metabolism. However, as a monomer, this protein can function as a protease. Mutations in this gene have been identified in patients with E3-deficient maple syrup urine disease and lipoamide dehydrogenase deficiency. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

Images

Sample:

Lane 1: Mouse Heart tissue lysates Lane 2: Mouse Testis tissue lysates

Primary: Anti-DLD (AP57025) at 1/1000 dilution

Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000

dilution

Predicted band size: 50 kDa Observed band size: 52 kDa

Paraformaldehyde-fixed, paraffin embedded (rat heart tissue); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (DLDD) Polyclonal Antibody, Unconjugated (AP57025) at 1:400 overnight at 4°C, followed by a conjugated secondary (sp-0023) for 20 minutes and DAB staining.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.