

IDE Monoclonal Antibody(3H4)

Catalog # AP63337

Product Information

Application	WB, IHC-P, IF, ICC
Primary Accession	P14735
Reactivity	Human, Hamster
Host	Mouse
Clonality	Monoclonal
Calculated MW	117968

Additional Information

Gene ID	3416
Other Names	IDE; Insulin-degrading enzyme; Abeta-degrading protease; Insulin protease; Insulinase; Insulysin
Dilution	WB~~WB: 1:1000 IF 1:200 IHC 1:50-300 IHC-P~~WB: 1:1000 IF 1:200 IHC 1:50-300 IF~~1:50~200 ICC~~N/A
Format	PBS, pH 7.4, containing 0.09% (W/V) sodium azide as Preservative and 50% Glycerol.
Storage Conditions	-20°C

Protein Information

Name	IDE {ECO:0000303 PubMed:20364150, ECO:0000312 HGNC:HGNC:5381}
Function	Plays a role in the cellular breakdown of insulin, APP peptides, IAPP peptides, natriuretic peptides, glucagon, bradykinin, kallidin, and other peptides, and thereby plays a role in intercellular peptide signaling (PubMed: 10684867 , PubMed: 17051221 , PubMed: 17613531 , PubMed: 18986166 , PubMed: 19321446 , PubMed: 21098034 , PubMed: 2293021 , PubMed: 23922390 , PubMed: 24847884 , PubMed: 26394692 , PubMed: 26968463 , PubMed: 29596046). Substrate binding induces important conformation changes, making it possible to bind and degrade larger substrates, such as insulin (PubMed: 23922390 , PubMed: 26394692 , PubMed: 29596046). Contributes to the regulation of peptide hormone signaling cascades and regulation of blood glucose homeostasis via its role in the degradation of insulin, glucagon and IAPP (By similarity). Plays a role in the degradation and clearance of APP-derived amyloidogenic peptides that are secreted by neurons and microglia (Probable) (PubMed: 26394692 , PubMed: 9830016). Degrades the natriuretic peptides ANP, BNP and CNP, inactivating their ability to raise intracellular cGMP (PubMed: 21098034). Also degrades an aberrant frameshifted 40-residue form of NPPA (fsNPPA) which

is associated with familial atrial fibrillation in heterozygous patients (PubMed:[21098034](#)). Involved in antigen processing. Produces both the N terminus and the C terminus of MAGEA3-derived antigenic peptide (EVDPIGHLY) that is presented to cytotoxic T lymphocytes by MHC class I.

Cellular Location

Cytoplasm, cytosol. Cell membrane {ECO:0000250 | UniProtKB:P35559}. Secreted Note=Present at the cell surface of neuron cells. The membrane-associated isoform is approximately 5 kDa larger than the known cytosolic isoform

Tissue Location

Detected in brain and in cerebrospinal fluid (at protein level).

Background

Plays a role in the cellular breakdown of insulin, IAPP, glucagon, bradykinin, kallidin and other peptides, and thereby plays a role in intercellular peptide signaling. Degrades amyloid formed by APP and IAPP. May play a role in the degradation and clearance of naturally secreted amyloid beta-protein by neurons and microglia.

Images

Immunohistochemical analysis of paraffin-embedded Human-liver-cancer tissue. 1, IDE Monoclonal Antibody(3H4) was diluted at 1:200(4°C, overnight). 2, Sodium citrate pH 6.0 was used for antibody retrieval(>98°C, 20min). 3, Secondary antibody was diluted at 1:200(room temperature, 30min). Negative control was used by secondary antibody only.

Immunofluorescence analysis of Human-breast tissue. 1, IDE Monoclonal Antibody(3H4)(red) was diluted at 1:200(4°C, overnight). 2, Cy3 labeled Secondary antibody was diluted at 1:300(room temperature, 50min). 3, Picture B: DAPI(blue) 10min. Picture A: Target. Picture B: DAPI. Picture C: merge of A+B

Western blot analysis of 1) HeLa, 2) HepG2, diluted at 1:2000

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.