

AMPKβ2 Polyclonal Antibody

Catalog # AP63586

Product Information

Application WB Primary Accession 043741

Reactivity Human, Mouse, Rat

Host Rabbit
Clonality Polyclonal
Calculated MW 30302

Additional Information

Gene ID 5565

Other Names PRKAB2; 5'-AMP-activated protein kinase subunit beta-2; AMPK subunit beta-2

Dilution WB~~WB: 1:1000-2000

Format PBS, pH 7.4, containing 0.09% (W/V) sodium azide as Preservative and 50%

Glycerol.

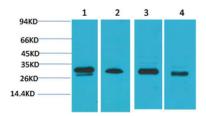
Storage Conditions -20°C

Protein Information

Name PRKAB2

Function Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy

sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits


(PRKAG1, PRKAG2 or PRKAG3).

Background

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein,

carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Images

Western blot analysis of 1) 293T, 2) HepG2, 3) Mouse Heart Tissue, 4) Rat Heart Tissue using AMPK β 2 Polyclonal Antibody.. Secondary antibody was diluted at 1:20000

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.