

ACCα Polyclonal Antibody

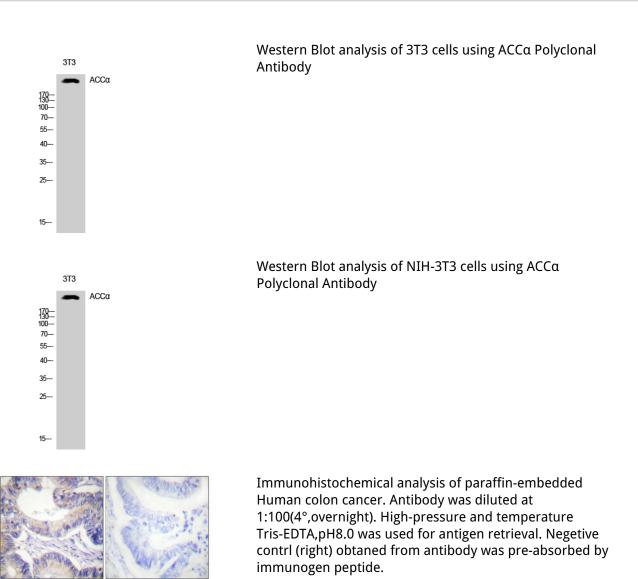
Catalog # AP68257

Product Information

Application	WB, IHC-P
Primary Accession	<u>Q13085</u>
Reactivity	Human, Mouse, Rat
Host	Rabbit
Clonality	Polyclonal
Calculated MW	265554

Additional Information

Gene ID	31
Other Names	ACACA; ACAC; ACC1; ACCA; Acetyl-CoA carboxylase 1; ACC1; ACC-alpha
Dilution	WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/5000. Not yet tested in other applications. IHC-P~~N/A
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C


Protein Information

Background

Name Synonyms	ACACA (<u>HGNC:84</u>) ACAC, ACC1, ACCA
Function	Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed: <u>20457939</u> , PubMed: <u>20952656</u> , PubMed: <u>29899443</u>). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed: <u>20457939</u> , PubMed: <u>20952656</u>
Cellular Location	Cytoplasm, cytosol {ECO:0000250 UniProtKB:Q5SWU9}
Tissue Location	Expressed in brain, placenta, skeletal muscle, renal, pancreatic and adipose tissues; expressed at low level in pulmonary tissue; not detected in the liver

Catalyzes the rate-limiting reaction in the biogenesis of long-chain fatty acids. Carries out three functions: biotin carboxyl carrier protein, biotin carboxylase and carboxyltransferase.

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.