MAP3K7IP1-S423 Antibody Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP6861a #### **Product Information** **Application** WB, E **Primary Accession** Q15750 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit IgG **Clone Names** RB12711 **Calculated MW** 54644 401-430 **Antigen Region** ### **Additional Information** **Gene ID** 10454 Other Names TGF-beta-activated kinase 1 and MAP3K7-binding protein 1, Mitogen-activated protein kinase kinase kinase 7-interacting protein 1, TGF-beta-activated kinase 1-binding protein 1, TAK1-binding protein 1, TAB1, MAP3K7IP1 Target/Specificity This MAP3K7IP1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 401-430 amino acids from human MAP3K7IP1. **Dilution** WB~~1:1000 E~~Use at an assay dependent concentration. **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. **Storage** Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. **Precautions** MAP3K7IP1-S423 Antibody is for research use only and not for use in diagnostic or therapeutic procedures. #### **Protein Information** Name TAB1 Synonyms MAP3K7IP1 **Function** Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). **Cellular Location** Cytoplasm, cytosol. Endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side. Note=Recruited to the endoplasmic reticulum following interaction with STING1 **Tissue Location** Ubiquitous.. ## **Background** MAP3K7IP1 was identified as a regulator of the MAP kinase kinase kinase MAP3K7/TAK1, which is known to mediate various intracellular signaling pathways, such as those induced by TGF beta, interleukin 1, and WNT-1. This protein interacts and thus activates TAK1 kinase. It has been shown that the C-terminal portion of this protein is sufficient for binding and activation of TAK1, while a portion of the N-terminus acts as a dominant-negative inhibitor of TGF beta, suggesting that this protein may function as a mediator between TGF beta receptors and TAK1. This protein can also interact with and activate the mitogen-activated protein kinase 14 (MAPK14/p38alpha), and thus represents an alternative activation pathway, in addition to the MAPKK pathways, which contributes to the biological responses of MAPK14 to various stimuli. ## References Arch,R.H., et.al., Genes Dev. 12 (18), 2821-2830 (1998) Yamaguchi,K., et.al., EMBO J. 18 (1), 179-187 (1999) ## **Images** Western blot analysis of MAP3K7IP1 (arrow) using rabbit polyclonal MAP3K7IP1-pS423 (Cat. #AP6861a). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected with the MAP3K7IP1 gene (Lane 2) (Origene Technologies). Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.