

CBG Polyclonal Antibody

Catalog # AP68872

Product Information

Application	WB, E
Primary Accession	Q9H227
Reactivity	Human, Rat, Mouse
Host	Rabbit
Clonality	Polyclonal
Calculated MW	53696

Additional Information

Gene ID	57733
Other Names	GBA3; CBG; CBGL1; Cytosolic beta-glucosidase; Cytosolic beta-glucosidase-like protein 1
Dilution	WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications. E~~N/A
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

Protein Information

Name	GBA3 (HGNC:19069)
Synonyms	CBG, CBGL1
Function	Neutral cytosolic beta-glycosidase with a broad substrate specificity that could play a role in the catabolism of glycosylceramides (PubMed: 11389701 , PubMed: 11784319 , PubMed: 17595169 , PubMed: 20728381 , PubMed: 26724485 , PubMed: 33361282). Has a significant glucosylceramidase activity in vitro (PubMed: 17595169 , PubMed: 26724485). However, that activity is relatively low and its significance in vivo is not clear (PubMed: 17595169 , PubMed: 20728381 , PubMed: 26724485). Hydrolyzes galactosylceramides/GalCers, glucosylsphingosines/GlcSphs and galactosylsphingosines/GalSphs (PubMed: 17595169). However, the in vivo relevance of these activities is unclear (PubMed: 17595169). It can also hydrolyze a broad variety of dietary glycosides including phytoestrogens, flavonols, flavones, flavanones and cyanogens in vitro and could therefore play a role in the metabolism of xenobiotics (PubMed: 11784319). Possesses transxylosylase activity in vitro using xylosylated ceramides/XylCers (such as beta-D-xylosyl-(11')-N-acylsphing-4-enine) as xylosyl donors and cholesterol as

acceptor (PubMed:[33361282](#)). Could also play a role in the catabolism of cytosolic sialyl free N-glycans (PubMed:[26193330](#)).

Cellular Location

Cytoplasm, cytosol

Tissue Location

Present in small intestine (at protein level). Expressed in liver, small intestine, colon, spleen and kidney. Down- regulated in renal cell carcinomas and hepatocellular carcinomas

Background

Glycosidase probably involved in the intestinal absorption and metabolism of dietary flavonoid glycosides. Able to hydrolyze a broad variety of glycosides including phytoestrogens, flavonols, flavones, flavanones and cyanogens. Possesses beta- glycosylceramidase activity and may be involved in a nonlysosomal catabolic pathway of glycosylceramide.

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.