

# PDK4 Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7041B

# **Product Information**

| Application       | WB, IHC-P, IF, E  |
|-------------------|-------------------|
| Primary Accession | <u>Q16654</u>     |
| Reactivity        | Human, Mouse, Rat |
| Host              | Rabbit            |
| Clonality         | Polyclonal        |
| Isotype           | Rabbit IgG        |
| Calculated MW     | 46469             |
| Antigen Region    | 382-410           |
|                   |                   |

# **Additional Information**

| Gene ID            | 5166                                                                                                                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other Names        | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4,<br>mitochondrial, Pyruvate dehydrogenase kinase isoform 4, PDK4, PDHK4                                                         |
| Target/Specificity | This PDK4 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 382-410 amino acids from the C-terminal region of human PDK4.                            |
| Dilution           | WB~~1:2000 IHC-P~~1:100~500 IF~~1:100 E~~Use at an assay dependent concentration.                                                                                                               |
| Format             | Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide.<br>This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation<br>followed by dialysis against PBS. |
| Storage            | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.                                                         |
| Precautions        | PDK4 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.                                                                                        |

#### **Protein Information**

| Name     | PDK4                                                                                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Synonyms | PDHK4                                                                                                                               |
| Function | Kinase that plays a key role in regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate |

|                   | dehydrogenase subunits PDHA1 and PDHA2. This inhibits pyruvate<br>dehydrogenase activity, and thereby regulates metabolite flux through the<br>tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the<br>formation of acetyl-coenzyme A from pyruvate. Inhibition of pyruvate<br>dehydrogenase decreases glucose utilization and increases fat metabolism in<br>response to prolonged fasting and starvation. Plays an important role in<br>maintaining normal blood glucose levels under starvation, and is involved in<br>the insulin signaling cascade. Via its regulation of pyruvate dehydrogenase<br>activity, plays an important role in maintaining normal blood pH and in<br>preventing the accumulation of ketone bodies under starvation. In the fed<br>state, mediates cellular responses to glucose levels and to a high-fat diet.<br>Regulates both fatty acid oxidation and de novo fatty acid biosynthesis. Plays<br>a role in the generation of reactive oxygen species. Protects detached<br>epithelial cells against anoikis. Plays a role in cell proliferation via its role in<br>regulating carbohydrate and fatty acid metabolism. |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cellular Location | Mitochondrion matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tissue Location   | Ubiquitous; highest levels of expression in heart and skeletal muscle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Background

PDK4 inhibits the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1 alpha subunit, thus contributing to the regulation of glucose metabolism.

#### References

References for protein: 1. Rosa, G., et al., Obes. Res. 11(2):176-182 (2003). 2.Razeghi, P., et al., Cardiology 97(4):203-209 (2002). 3.Rowles, J., et al., J. Biol. Chem. 271(37):22376-22382 (1996). 4.Gudi, R., et al., J. Biol. Chem. 270(48):28989-28994 (1995).

References for HeLa cell line:

1. Scherer WF, Syverton JT, Gey GO (May 1953). "Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix". J. Exp. Med. 97 (5): 695–710. [PubMed:13052828].

2. Macville M, Schr Ick E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, Popescu N, Ried T (January 1999). "Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping". Cancer Res. 59 (1): 141–50. [PubMed: 9892199].

3. Rahbari R, Sheahan T, Modes V, Collier P, Macfarlane C, Badge RM (April 2009). "A novel L1 retrotransposon marker for HeLa cell line identification". BioTechniques 46 (4): 277–84. [PubMed: 19450234].

4. Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RA, Masters JR, Nakamura Y, Reid YA, Reddel RR, Freshney RI (July 2010). "Check your cultures! A list of cross-contaminated or misidentified cell lines". Int. J. Cancer 127 (1): 1–8. [PubMed:20143388].

#### Images

All lanes : Anti-PDK4 Antibody (C396) at 1:2000 dilution Lane 1: human heart lysates Lane 2: mouse skeletal muscle lysates Lysates/proteins at 20 µg per lane.



Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution Predicted band size : 46 kDa Blocking/Dilution buffer: 5% NFDM/TBST.



AP7041b staining PDK4 in human heart tissue sections by Immunohistochemistry (IHC-P - paraformaldehyde-fixed, paraffin-embedded sections). Tissue was fixed with formaldehyde and blocked with 3% BSA for 0. 5 hour at room temperature; antigen retrieval was by heat mediation with a citrate buffer (pH6). Samples were incubated with primary antibody (1/25) for 1 hours at 37°C. A undiluted biotinylated goat polyvalent antibody was used as the secondary antibody.



Fluorescent confocal image of HeLa cells stained with PDK4 (C-term) antibody. HeLa cells were fixed with 4% PFA (20 min), permeabilized with Triton X-100 (0.2%, 30 min). Cells were then incubated with AP7041b PDK4 (C-term) primary antibody (1:100, 2 h at room temperature). For secondary antibody, Alexa Fluor® 488 conjugated donkey anti-rabbit antibody (green) was used (1:1000, 1h). Nuclei were counterstained with Hoechst 33342 (blue) (10 µg/ml, 5 min). Note the highly specific localization of the PDK4 mainly to the cytoplasm.



Formalin-fixed and paraffin-embedded human skeletal muscle reacted with PDK4 Antibody (C-term) (Cat. #AP7041b), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

All lanes : Anti-PDK4 Antibody (C-term) at 1:1000 dilution Lane 1: A549 whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated (ASP1615) at 1/15000 dilution. Observed band size : 50kDa Blocking/Dilution buffer: 5% NFDM/TBST.





All lanes : Anti-PDK4 Antibody (C-term) at 1:2000 dilution Lane 1: human heart lysate Lane 2: K562 whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 46 kDa Blocking/Dilution buffer: 5% NFDM/TBST.



Anti-PDK4 Antibody (C-term) at 1:2000 dilution + human heart lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 46 kDa Blocking/Dilution buffer: 5% NFDM/TBST.



The PDK4 Antibody (C-term) (Cat# AP7041b) is used in Western blot to detect PDK4 in mouse skeletal muscle tissue lysate.

PDK4 Antibody (C396) (Cat. #AP7041b) western blot analysis in K562 cell line lysates (35ug/lane).This demonstrates the PDK4 antibody detected the PDK4 protein (arrow).





Formalin-fixed and paraffin-embedded human Adrenal tissue reacted with PDK4 Antibody (C-term) (Cat. #AP7041b), which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

# Citations

- BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development
- FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity
- Aldosterone from endometrial glands is benefit for human decidualization
- Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance.
- Defects in the mitochondrial-tRNA modification enzymes MTO1 and GTPBP3 promote different metabolic reprogramming through a HIF-PPARy-UCP2-AMPK axis.
- The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis.
- Transforming Growth Factor β Mediates Drug Resistance by Regulating the Expression of Pyruvate Dehydrogenase Kinase 4 in Colorectal Cancer.
- Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a.
- On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury.
- miR-211 functions as a metabolic switch in human melanoma cells.
- Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics.
- Altered regulation of PDK4 expression promotes antiestrogen resistance in human breast cancer cells.
- Glucose oxidation modulates anoikis and tumor metastasis.
- Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation.
- Dietary supplementation with vitamin E and C attenuates dexamethasone-induced glucose intolerance in rats.
- PDH activation during in vitro muscle contractions in PDH kinase 2 knockout mice: effect of PDH kinase 1 compensation.
- Differential expression of metabolic genes essential for glucose and lipid metabolism in skeletal muscle from spinal cord injured subjects.
- Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes.
- Adaptive gene regulation of pyruvate dehydrogenase kinase isoenzyme 4 in hepatotoxic chemical-induced liver injury and its stimulatory potential for DNA repair and cell proliferation.
- Bezafibrate induces myotoxicity in human rhabdomyosarcoma cells via peroxisome proliferator-activated receptor alpha signaling.
- <u>Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: role of the peroxisome</u> proliferator-activated receptor gamma coactivator (PGC-1 alpha).
- Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function.
- <u>Regulation of the PDK4 isozyme by the Rb-E2F1 complex.</u>
- <u>CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress.</u>
- The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in

adipocytes.

- Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression.
  Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.
  Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets.
  Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.