

KIR2.1 Polyclonal Antibody

Catalog # AP70656

Product Information

Application WB, IHC-P
Primary Accession P63252
Reactivity Human, Rat
Host Rabbit
Clonality Polyclonal
Calculated MW 48288

Additional Information

Gene ID 3759

Other Names KCNJ2; IRK1; Inward rectifier potassium channel 2; Cardiac inward rectifier

potassium channel; Inward rectifier K(+) channel Kir2.1; IRK-1; hIRK1;

Potassium channel; inwardly rectifying subfamily J member 2

Dilution WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300.

ELISA: 1/10000. Not yet tested in other applications. IHC-P~~N/A

Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium

azide.

Storage Conditions -20°C

Protein Information

Name KCNJ2

Synonyms IRK1

Function Inward rectifier potassium channels are characterized by a greater tendency

to allow potassium to flow into the cell rather than out of it

(PubMed:36149965, PubMed:7590287, PubMed:9490857). Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages (PubMed:7590287, PubMed:7696590). The inward rectification is mainly due to the blockage of outward current by internal magnesium (PubMed:9490857). Can be blocked by extracellular barium or cesium (PubMed:7590287, PubMed:7696590). Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues (PubMed:7590287, PubMed:7696590, PubMed:7840300).

Cellular Location Cell membrane; Multi-pass membrane protein Cell membrane, sarcolemma,

T-tubule {ECO:0000250 | UniProtKB:Q64273}

Heart, brain, placenta, lung, skeletal muscle, and kidney. Diffusely distributed throughout the brain

Background

Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium or cesium.

Images

Western Blot analysis of various cells using KIR2.1 Polyclonal Antibody diluted at 1:500

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.