

Mfn2 Polyclonal Antibody

Catalog # AP70923

Product Information

Application	WB, IHC-P, IF, ICC, E
Primary Accession	O95140
Reactivity	Human, Mouse, Rat
Host	Rabbit
Clonality	Polyclonal
Calculated MW	86402

Additional Information

Gene ID	9927
Other Names	MFN2; CPRP1; KIAA0214; Mitofusin-2; Transmembrane GTPase MFN2
Dilution	WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/40000. Not yet tested in other applications. IHC-P~~N/A IF~~1:50~200 ICC~~N/A E~~N/A
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

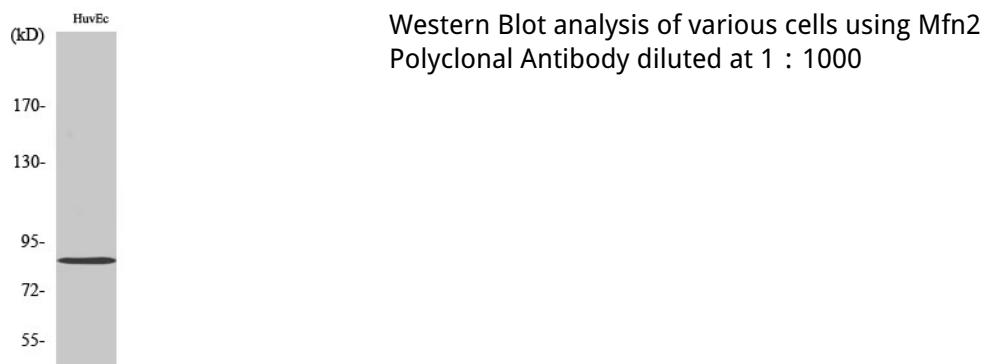
Protein Information

Name	MFN2 {ECO:0000303 PubMed:12598526, ECO:0000312 HGNC:HGNC:16877}
Function	Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion (PubMed: 11181170 , PubMed: 11950885 , PubMed: 19889647 , PubMed: 26214738 , PubMed: 28114303). Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events (PubMed: 28114303). Overexpression induces the formation of mitochondrial networks (PubMed: 28114303). Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the regulation of vascular smooth muscle cell proliferation (By similarity). Involved in the clearance of damaged mitochondria via selective autophagy (mitophagy) (PubMed: 23620051). Is required for PRKN recruitment to dysfunctional mitochondria (PubMed: 23620051). Involved in the control of unfolded protein response (UPR) upon ER stress including activation of apoptosis and autophagy during ER stress (By similarity). Acts as an upstream regulator of EIF2AK3 and suppresses EIF2AK3 activation under basal

conditions (By similarity).

Cellular Location Mitochondrion outer membrane; Multi-pass membrane protein
Note=Colocalizes with BAX during apoptosis

Tissue Location Ubiquitous; expressed at low level. Highly expressed in heart and kidney.


Background

Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion (PubMed:[11181170](#), PubMed:[11950885](#), PubMed:[28114303](#)). Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events (PubMed:[28114303](#)). Overexpression induces the formation of mitochondrial networks (PubMed:[28114303](#)). Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the regulation of vascular smooth muscle cell proliferation (By similarity). Involved in the clearance of damaged mitochondria via selective autophagy (mitophagy) (PubMed:[23620051](#)). Is required for PRKN recruitment to dysfunctional mitochondria (PubMed:[23620051](#)). Involved in the control of unfolded protein response (UPR) upon ER stress including activation of apoptosis and autophagy during ER stress (By similarity). Acts as an upstream regulator of EIF2AK3 and suppresses EIF2AK3 activation under basal conditions (By similarity).

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.