Na+/K+-ATPase α1 Polyclonal Antibody Catalog # AP71156 #### **Product Information** **Application** WB, IHC-P, IF **Primary Accession** P05023 **Reactivity** Human, Mouse, Rat HostRabbitClonalityPolyclonalCalculated MW112896 #### **Additional Information** Gene ID 476 Other Names ATP1A1; Sodium/potassium-transporting ATPase subunit alpha-1; Na(+)/K(+) ATPase alpha-1 subunit; Sodium pump subunit alpha-1 Dilution WB~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. Immunofluorescence: 1/200 - 1/1000. ELISA: 1/10000. Not yet tested in other applications. IHC-P~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. Immunofluorescence: 1/200 - 1/1000. ELISA: 1/10000. Not yet tested in other applications. IF~~1:50~200 Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide. Storage Conditions -20°C #### **Protein Information** Name ATP1A1 **Function** This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). Cellular Location Cell membrane {ECO:0000250 | UniProtKB:Q8VDN2}; Multi-pass membrane protein. Basolateral cell membrane {ECO:0000250 | UniProtKB:P06685}; Multi-pass membrane protein. Cell membrane, sarcolemma; Multi-pass membrane protein. Cell projection, axon {ECO:0000250 | UniProtKB:P06685}. Melanosome. Note=Identified by mass spectrometry in melanosome fractions ## **Background** This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. ### **Images** Western Blot analysis of various cells using Na+/K+-ATPase α1 Polyclonal Antibody diluted at 1:1000 Western Blot analysis of 293 cells using Na+/K+-ATPase α1 Polyclonal Antibody diluted at 1 : 1000 Immunohistochemical analysis of paraffin-embedded Human kidney. 1, Antibody was diluted at 1:100(4°,overnight). 2, High-pressure and temperature EDTA, pH8.0 was used for antigen retrieval. 3,Secondary antibody was diluted at 1:200(room temperature, 30min). Immunohistochemical analysis of paraffin-embedded Human kidney. 1, Antibody was diluted at 1:100(4°,overnight). 2, High-pressure and temperature EDTA, pH8.0 was used for antigen retrieval. 3,Secondary antibody was diluted at 1:200(room temperature, 30min). Immunohistochemical analysis of paraffin-embedded Human kidney. 1, Antibody was diluted at 1:100(4°,overnight). 2, High-pressure and temperature EDTA, pH8.0 was used for antigen retrieval. 3,Secondary antibody was diluted at 1:200(room temperature, 30min). Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.