

NQO1 Polyclonal Antibody

Catalog # AP71369

Product Information

Application	WB
Primary Accession	<u>P15559</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Calculated MW	30868

Additional Information

Gene ID	1728
Other Names	NQO1; DIA4; NMOR1; NAD(P)H dehydrogenase [quinone] 1; Azoreductase; DT-diaphorase; DTD; Menadione reductase; NAD(P)H:quinone oxidoreductase 1; Phylloquinone reductase; Quinone reductase 1; QR1
Dilution	WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/10000. Not yet tested in other applications.
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

Protein Information

Name	NQO1 {ECO:0000303 PubMed:1657151, ECO:0000312 HGNC:HGNC:2874}
Function	Flavin-containing quinone reductase that catalyzes two- electron reduction of quinones to hydroquinones using either NADH or NADPH as electron donors. In a ping-pong kinetic mechanism, the electrons are sequentially transferred from NAD(P)H to flavin cofactor and then from reduced flavin to the quinone, bypassing the formation of semiquinone and reactive oxygen species (By similarity) (PubMed: <u>8999809</u> , PubMed: <u>9271353</u>). Regulates cellular redox state primarily through quinone detoxification. Reduces components of plasma membrane redox system such as coenzyme Q and vitamin quinones, producing antioxidant hydroquinone forms. In the process may function as superoxide scavenger to prevent hydroquinone oxidation and facilitate excretion (PubMed: <u>15102952</u> , PubMed: <u>8999809</u> , PubMed: <u>9271353</u>). Alternatively, can activate quinones and their derivatives by generating redox reactive hydroquinones with DNA cross-linking antitumor potential (PubMed: <u>8999809</u>). Acts as a gatekeeper of the core 20S proteasome known to degrade proteins with unstructured regions. Upon oxidative stress, interacts with tumor suppressors TP53 and TP73 in a

NADH-dependent way and inhibits their ubiquitin-independent degradation
by the 20S proteasome (PubMed:<u>15687255</u>, PubMed:<u>28291250</u>).Cellular LocationCytoplasm, cytosol {ECO:0000250|UniProtKB:P05982}

Background

The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinons involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis.

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.