

PARP-2 Polyclonal Antibody

Catalog # AP71777

Product Information

Application	WB
Primary Accession	<u>Q9UGN5</u>
Reactivity	Human, Mouse
Host	Rabbit
Clonality	Polyclonal
Calculated MW	66206

Additional Information

Gene ID	10038
Other Names	PARP2; ADPRT2; ADPRTL2; Poly [ADP-ribose] polymerase 2; PARP-2; hPARP-2; ADP-ribosyltransferase diphtheria toxin-like 2; ARTD2; NAD(+) ADP-ribosyltransferase 2; ADPRT-2; Poly[ADP-ribose] synthase 2; pADPRT-2
Dilution	WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/40000. Not yet tested in other applications.
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

Protein Information

Name	PARP2 {ECO:0000303 PubMed:20092359, ECO:0000312 HGNC:HGNC:272}
Function	Poly-ADP-ribosyltransferase that mediates poly-ADP- ribosylation of proteins and plays a key role in DNA repair (PubMed: <u>10364231</u> , PubMed: <u>25043379</u> , PubMed: <u>27471034</u> , PubMed: <u>30104678</u> , PubMed: <u>32028527</u> , PubMed: <u>32939087</u> , PubMed: <u>34108479</u> , PubMed: <u>34486521</u> , PubMed: <u>34874266</u>). Mediates glutamate, aspartate or serine ADP- ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed: <u>25043379</u> , PubMed: <u>30104678</u> , PubMed: <u>30321391</u>). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed: <u>32939087</u>). Mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1 (PubMed: <u>25043379</u>). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 conferring serine specificity by completing the PARP2 active site (PubMed: <u>28190768</u> , PubMed: <u>32028527</u> , PubMed: <u>34108479</u> ,

	PubMed: <u>34486521</u> , PubMed: <u>34874266</u>). PARP2 initiates the repair of double-strand DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones, thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed: <u>10364231</u> , PubMed: <u>32939087</u> , PubMed: <u>34108479</u>). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP2 in order to limit the length of poly- ADP-ribose chains (PubMed: <u>34732825</u> , PubMed: <u>34795260</u>). Specifically mediates formation of branched poly-ADP-ribosylation (PubMed: <u>30104678</u>). Branched poly-ADP-ribose chains are specifically recognized by some factors, such as APLF (PubMed: <u>30104678</u>). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed: <u>27471034</u> , PubMed: <u>29361132</u>).
Cellular Location	Nucleus. Chromosome. Note=Recruited to DNA damage sites in a PARP1-dependent process: recognizes and binds poly-ADP-ribose chains produced by PARP1 at DNA damage sites via its N-terminus, leading to its recruitment.
Tissue Location	Widely expressed, mainly in actively dividing tissues (PubMed:10364231). The highest levels are in the brain, heart, pancreas, skeletal muscle and testis; also detected in kidney, liver, lung, placenta, ovary and spleen; levels are low in leukocytes, colon, small intestine, prostate and thymus (PubMed:10364231)

Background

Poly-ADP-ribosyltransferase that mediates poly-ADP- ribosylation of proteins and plays a key role in DNA repair (PubMed:<u>10364231</u>, PubMed:<u>28190768</u>, PubMed:<u>25043379</u>). Mainly mediates glutamate and aspartate ADP-ribosylation of target proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of glutamate and aspartate residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:<u>25043379</u>). ADP- ribosylation follows DNA damage and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks (PubMed:<u>10364231</u>). Also mediates serine ADP- ribosylation of target proteins following interaction with HPF1; HPF1 conferring serine specificity (PubMed:<u>28190768</u>). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed:<u>27471034</u>).

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.