

# SPHK2 Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7238B

## **Product Information**

| Application       | IHC-P-Leica, WB, E |
|-------------------|--------------------|
| Primary Accession | <u>Q9NRA0</u>      |
| Reactivity        | Human, Mouse       |
| Host              | Rabbit             |
| Clonality         | Polyclonal         |
| Isotype           | Rabbit IgG         |
| Calculated MW     | 69217              |
| Antigen Region    | 590-620            |
|                   |                    |

# **Additional Information**

| Gene ID            | 56848                                                                                                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other Names        | Sphingosine kinase 2, SK 2, SPK 2, SPHK2                                                                                                                                                        |
| Target/Specificity | This SPHK2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 590-620 amino acids from the C-terminal region of human SPHK2.                          |
| Dilution           | IHC-P-Leica~~1:250 WB~~1:1000 E~~Use at an assay dependent concentration.                                                                                                                       |
| Format             | Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide.<br>This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation<br>followed by dialysis against PBS. |
| Storage            | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.                                                         |
| Precautions        | SPHK2 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.                                                                                       |

#### **Protein Information**

| Name     | SPHK2 ( <u>HGNC:18859</u> )                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synonyms | SK2                                                                                                                                                                                                    |
| Function | Catalyzes the phosphorylation of sphingosine to form<br>sphingosine-1-phosphate (SPP), a lipid mediator with both intra- and<br>extracellular functions. Also acts on D-erythro-dihydrosphingosine, D- |

|                   | erythro-sphingosine and L-threo-dihydrosphingosine. Binds<br>phosphoinositides (PubMed: <u>12954646</u> , PubMed: <u>19168031</u> ). In contrast to<br>prosurvival SPHK1, has a positive effect on intracellular ceramide levels,<br>inhibits cells growth and enhances apoptosis (PubMed: <u>16118219</u> ). In<br>mitochondria, is important for cytochrome-c oxidase assembly and<br>mitochondrial respiration. The SPP produced in mitochondria binds PHB2 and<br>modulates the regulation via PHB2 of complex IV assembly and respiration<br>(PubMed: <u>20959514</u> ). In nucleus, plays a role in epigenetic regulation of gene<br>expression. Interacts with HDAC1 and HDAC2 and, through SPP production,<br>inhibits their enzymatic activity, preventing the removal of acetyl groups from<br>lysine residues with histones. Up- regulates acetylation of histone H3-K9,<br>histone H4-K5 and histone H2B- K12 (PubMed: <u>19729656</u> ). In nucleus, may<br>have an inhibitory effect on DNA synthesis and cell cycle (PubMed: <u>12954646</u> ,<br>PubMed: <u>16103110</u> ). In mast cells, is the main regulator of SPP production<br>which mediates calcium influx, NF-kappa-B activation, cytokine production,<br>such as TNF and IL6, and degranulation of mast cells (By similarity). In<br>dopaminergic neurons, is involved in promoting mitochondrial functions<br>regulating ATP and ROS levels (By similarity). Also involved in the regulation of<br>glucose and lipid metabolism (By similarity). |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cellular Location | Cytoplasm. Nucleus. Endoplasmic reticulum<br>{ECO:000250 UniProtKB:Q9JIA7}. Mitochondrion inner membrane<br>{ECO:0000250 UniProtKB:Q9JIA7}. Note=In nucleus, located in nucleosomes<br>where it associates with core histone proteins such as histone 3<br>(PubMed:19729656). In brains of patients with Alzheimer's disease, may be<br>preferentially localized in the nucleus. Cytosolic expression decrease<br>correlates with the density of amyloid deposits (PubMed:29615132). In<br>apoptotic cells, colocalizes with CASP1 in cell membrane where is cleaved and<br>released from cells in an active form (PubMed:20197547).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tissue Location   | Mainly expressed in adult kidney, liver, and brain (PubMed:10751414).<br>Expressed in cerebral cortex and hippocampus (at protein level)<br>(PubMed:29615132). Isoform 1 is the predominant form expressed in most<br>tissues (PubMed:16103110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Background

Sphingosine Kinase (SphK) catalyzes the phosphorylation of the lipid sphingosine, creating the bioactive lipid sphingosine-1-phosphate (S1P). S1P subsequently signals through cell surface G protein-coupled receptors, as well as intracellularly, to modulate cell proliferation, survival, motility and differentiation. SphK is an important signaling enzyme which is activated by diverse agents, including growth factors that signal through receptor tyrosine kinases, agents activating G protein-coupled receptors, and immunoglobulin receptors. Two SphK isotypes, SphK-1 and SphK-2, have been cloned, and both isotypes are ubiquitously expressed. SphK-1 has been shown to mediate cell growth, prevention of apoptosis, and cellular transformation, and is upregulated in a variety of human tumors. In contrast, SphK-2 increases apoptosis, and may be responsible for phosphorylating and activating the immunosuppressive drug FTY720.

# References

Shu, X., et al., Mol. Cell. Biol. 22(22):7758-7768 (2002). Xia, P., et al., J. Biol. Chem. 277(10):7996-8003 (2002). Liu, H., et al., J. Biol. Chem. 275(26):19513-19520 (2000). Shutler, G., et al., Genomics 34(3):334-339 (1996).

#### Images



SPHK2 Antibody (A605) (Cat. #AP7238b) western blot analysis in HepG2 cell line lysates (35ug/lane).This demonstrates the SPHK2 antibody detected the SPHK2 protein (arrow).

#### Citations

- Targeting sphingosine kinase 2 suppresses cell growth and synergizes with BCL2/BCL-XL inhibitors through NOXA-mediated MCL1 degradation in cholangiocarcinoma.
- Down-regulation of Sphk2 suppresses bladder cancer progression.
- Sphingosine 1-phosphate modulates spinal nociceptive processing.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.