

XRCC4 Polyclonal Antibody

Catalog # AP73104

Product Information

Application	WB
Primary Accession	<u>Q13426</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Calculated MW	38287

Additional Information

Gene ID	7518
Other Names	XRCC4; DNA repair protein XRCC4; X-ray repair cross-complementing protein 4
Dilution	WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications.
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

Protein Information

Name >	XRCC4 {ECO:0000303 PubMed:8548796, ECO:0000312 HGNC:HGNC:12831}
fa ((P P P O O O P O V N D S N D S N N D N N D N N N N N N N N	DNA repair protein XRCC4]: DNA non-homologous end joining (NHEJ) core actor, required for double-strand break repair and V(D)J recombination PubMed: <u>10757784</u> , PubMed: <u>10854421</u> , PubMed: <u>12517771</u> , PubMed: <u>16412978</u> , PubMed: <u>17124166</u> , PubMed: <u>17290226</u> , PubMed: <u>22228831</u> , PubMed: <u>25597996</u> , PubMed: <u>25742519</u> , PubMed: <u>25934149</u> , PubMed: <u>26100018</u> , PubMed: <u>26774286</u> , PubMed: <u>8548796</u>). Acts as a scaffold protein that regulates recruitment of other proteins to DNA double-strand breaks (DSBs) (PubMed: <u>15385968</u> , PubMed: <u>20852255</u> , PubMed: <u>26774286</u> , PubMed: <u>27437582</u>). Associates with IHEJ1/XLF to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired PubMed: <u>21768349</u> , PubMed: <u>21775435</u> , PubMed: <u>22287571</u> , PubMed: <u>26100018</u> , PubMed: <u>27437582</u> , PubMed: <u>28500754</u>). The IRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA nolecules, holding the broken DNA fragments in close proximity to one other PubMed: <u>27437582</u>). The mobility of the bridges ensures that the ends remain

	accessible for further processing by other repair factors (PubMed: <u>27437582</u>). Plays a key role in the NHEJ ligation step of the broken DNA during DSB repair via direct interaction with DNA ligase IV (LIG4): the LIG4-XRCC4 subcomplex reseals the DNA breaks after the gap filling is completed (PubMed: <u>10757784</u> , PubMed: <u>10854421</u> , PubMed: <u>12517771</u> , PubMed: <u>17290226</u> , PubMed: <u>19837014</u> , PubMed: <u>9242410</u>). XRCC4 stabilizes LIG4, regulates its subcellular localization and enhances LIG4's joining activity (PubMed: <u>10757784</u> , PubMed: <u>10854421</u> , PubMed: <u>12517771</u> , PubMed: <u>17290226</u> , PubMed: <u>21982441</u> , PubMed: <u>22228831</u> , PubMed: <u>9242410</u>). Binding of the LIG4-XRCC4 subcomplex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends (PubMed: <u>10757784</u> , PubMed: <u>10854421</u>). Promotes displacement of PNKP from processed strand break termini (PubMed: <u>20852255</u> , PubMed: <u>28453785</u>).
Cellular Location	Nucleus. Chromosome. Note=Localizes to site of double-strand breaks.
Tissue Location	Widely expressed

Background

Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination. Binds to DNA and to DNA ligase IV (LIG4). The LIG4-XRCC4 complex is responsible for the NHEJ ligation step, and XRCC4 enhances the joining activity of LIG4. Binding of the LIG4-XRCC4 complex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends.

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.