

FMO3 Polyclonal Antibody

Catalog # AP73636

Product Information

Application WB, IHC-P
Primary Accession P31513
Reactivity Human
Host Rabbit
Clonality Polyclonal
Calculated MW 60033

Additional Information

Gene ID 2328

Other Names FMO3; Dimethylaniline monooxygenase [N-oxide-forming] 3; Dimethylaniline

oxidase 3; FMO II; FMO form 2; Hepatic flavin-containing monooxygenase 3;

FMO 3; Trimethylamine monooxygenase

Dilution WB~~Western Blot: 1/500 - 1/2000. IHC-p: 1/100-1/300. ELISA: 1/20000. Not

yet tested in other applications. IHC-P~~Western Blot: 1/500 - 1/2000. IHC-p:

1/100-1/300. ELISA: 1/20000. Not yet tested in other applications.

Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium

azide.

Storage Conditions -20°C

Protein Information

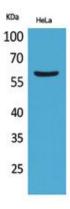
Name FMO3

Function Essential hepatic enzyme that catalyzes the oxygenation of a wide variety of

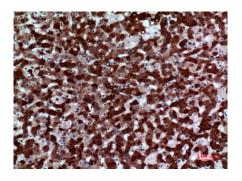
nitrogen- and sulfur-containing compounds including drugs as well as dietary compounds (PubMed:10759686, PubMed:30381441, PubMed:32156684). Plays an important role in the metabolism of trimethylamine (TMA), via the production of trimethylamine N-oxide (TMAO) metabolite (PubMed:9776311). TMA is generated by the action of gut microbiota using dietary precursors such as choline, choline containing compounds, betaine or L-carnitine. By regulating TMAO concentration, FMO3 directly impacts both platelet responsiveness and rate of thrombus formation (PubMed:29981269).

Cellular Location Microsome membrane {ECO:0000250 | UniProtKB:P32417}; Single-pass

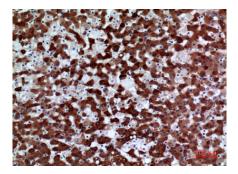
membrane protein. Endoplasmic reticulum membrane

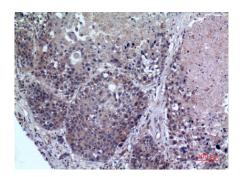

{ECO:0000250|UniProtKB:P32417}; Single-pass membrane protein

Tissue Location Liver.


Background

Essential hepatic enzyme that catalyzes the oxygenation of a wide variety of nitrogen- and sulfur-containing compounds including drugs as well as dietary compounds (PubMed:10759686, PubMed:30381441). Plays an important role in the metabolism of trimethylamine (TMA), via the production of trimethylamine N-oxide (TMAO) metabolite (PubMed:9776311). TMA is generated by the action of gut microbiota using dietary precursors such as choline, choline containing compounds, betaine or L-carnitine. By regulating TMAO concentration, FMO3 directly impacts both platelet responsiveness and rate of thrombus formation (PubMed:29981269).


Images


Western Blot analysis of HeLa cells using FMO3 Polyclonal Antibody.. Secondary antibody was diluted at 1:20000

Immunohistochemical analysis of paraffin-embedded human-liver, antibody was diluted at 1:100

Immunohistochemical analysis of paraffin-embedded human-liver, antibody was diluted at 1:100

Immunohistochemical analysis of paraffin-embedded human-lung, antibody was diluted at 1:100

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.