

AFG3L2 Polyclonal Antibody

Catalog # AP74280

Product Information

Application	WB
Primary Accession	<u>Q9Y4W6</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Calculated MW	88584

Additional Information

Gene ID	10939
Other Names	AFG3-like protein 2 (EC 3.4.24) (Paraplegin-like protein)
Dilution	WB~~WB 1:500-2000, ELISA 1:10000-20000
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

Protein Information

Name AFG	3L2 {ECO:0000303 PubMed:10395799, ECO:0000312 HGNC:HGNC:315}
in pr esse Pub Pub poss to u hydr Pub inne mist Pub pror MRF Pub ribo pres ribo	alytic component of the m-AAA protease, a protease that plays a key role roteostasis of inner mitochondrial membrane proteins, and which is ential for axonal and neuron development (PubMed: <u>19748354</u> , Med: <u>28396416</u> , PubMed: <u>29932645</u> , PubMed: <u>30683687</u> , Med: <u>31327635</u> , PubMed: <u>37917749</u> , PubMed: <u>38157846</u>). AFG3L2 sesses both ATPase and protease activities: the ATPase activity is required infold substrates, threading them into the internal proteolytic cavity for rolysis into small peptide fragments (PubMed: <u>19748354</u> , Med: <u>31327635</u>). The m-AAA protease carries out quality control in the er membrane of the mitochondria by mediating degradation of translated or misfolded polypeptides (PubMed: <u>26504172</u> , Med: <u>30683687</u> , PubMed: <u>34718584</u>). The m-AAA protease complex also notes the processing and maturation of mitochondrial proteins, such as PL32/bL32m, PINK1 and SP7 (PubMed: <u>22354088</u> , PubMed: <u>29932645</u> , Med: <u>30252181</u>). Mediates protein maturation of the mitochondrial somal subunit MRPL32/bL32m by catalyzing the cleavage of the sequence of MRPL32/bL32m prior to assembly into the mitochondrial some (PubMed: <u>29932645</u>). Required for SPG7 maturation into its active ure form after SPG7 cleavage by mitochondrial-processing peptidase

	(MPP) (PubMed: <u>30252181</u>). Required for the maturation of PINK1 into its 52kDa mature form after its cleavage by mitochondrial- processing peptidase (MPP) (PubMed: <u>22354088</u>). Acts as a regulator of calcium in neurons by mediating degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed: <u>27642048</u> , PubMed: <u>28396416</u>). Promotes the proteolytic degradation of GHITM upon hyperpolarization of mitochondria: progressive GHITM degradation leads to respiratory complex I degradation and broad reshaping of the mitochondrial proteome by AFG3L2 (PubMed: <u>35912435</u>). Also acts as a regulator of mitochondrial glutathione homeostasis by mediating cleavage and degradation of SLC25A39 (PubMed: <u>37917749</u> , PubMed: <u>38157846</u>). SLC25A39 cleavage is prevented when SLC25A39 binds iron-sulfur (PubMed: <u>37917749</u> , PubMed: <u>38157846</u>). Involved in the regulation of OMA1-dependent processing of OPA1 (PubMed: <u>17615298</u> , PubMed: <u>32600459</u>). May act by mediating processing of OMA1 precursor, participating in OMA1 maturation (PubMed: <u>29545505</u>).
Cellular Location	Mitochondrion inner membrane; Multi-pass membrane protein
Tissue Location	Ubiquitous. Highly expressed in the cerebellar Purkinje cells.

Background

ATP-dependent protease which is essential for axonal and neuron development. In neurons, mediates degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed:<u>27642048</u>). Required for the maturation of paraplegin (SPG7) after its cleavage by mitochondrial-processing peptidase (MPP), converting it into a proteolytically active mature form (By similarity).

Images

Western Blot analysis of 1,mouse-heart 2,293T cells using primary antibody diluted at 1:500(4°C overnight). Secondary antibody : Goat Anti-rabbit IgG IRDye 800(diluted at 1:5000, 25°C, 1 hour)

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.