

PAK2 Rabbit mAb

Catalog # AP75868

Product Information

Application WB. IHC-P **Primary Accession Q13177**

Human, Mouse, Rat Reactivity

Host

Clonality Monoclonal Antibody

Calculated MW 58043

Additional Information

Gene ID 5062

Other Names PAK2

Dilution WB~~1/500-1/1000 IHC-P~~N/A

Format Liquid

Protein Information

Name PAK2

Function Serine/threonine protein kinase that plays a role in a variety of different

signaling pathways including cytoskeleton regulation, cell motility, cell cycle

progression, apoptosis or proliferation (PubMed: 12853446, PubMed: 16617111, PubMed: 19273597, PubMed: 19923322,

PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a

downstream effector of the small GTPases CDC42 and RAC1

(PubMed: 7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full- length PAK2 stimulates cell survival and cell growth (PubMed: 7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed: 21724829). Phosphorylates

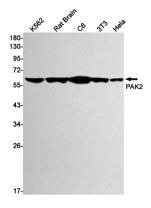
CASP7, thereby preventing its activity (PubMed: 21555521,

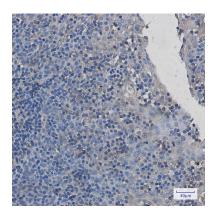
PubMed: 27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed: 19273597, PubMed: 19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the

nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:<u>12853446</u>, PubMed:<u>16617111</u>, PubMed:<u>9171063</u>). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation

(PubMed: 15234964).

Cellular Location [Serine/threonine-protein kinase PAK 2]: Cytoplasm Nucleus Note=MYO18A


mediates the cellular distribution of the PAK2-ARHGEF7-GIT1 complex to the


inner surface of the cell membrane

Tissue Location Ubiquitously expressed. Higher levels seen in skeletal muscle, ovary, thymus

and spleen

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.