10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.875.1999

SESN2 Rabbit mAb

Catalog # AP76071

Product Information

Application WB, IP, ICC Primary Accession P58004

Reactivity Human, Mouse, Rat

Host Rabbit

Clonality Monoclonal Antibody

Calculated MW 54494

Additional Information

Gene ID 83667

Other Names SESN2

Dilution WB~~1/500-1/1000 IP~~1/20 ICC~~N/A

Format Liquid

Protein Information

Name SESN2 (HGNC:20746)

Function Functions as an intracellular leucine sensor that negatively regulates the

mTORC1 signaling pathway through the GATOR complex (PubMed: 18692468,

PubMed:<u>25263562</u>, PubMed:<u>25457612</u>, PubMed:<u>26449471</u>, PubMed:<u>26586190</u>, PubMed:<u>26612684</u>, PubMed:<u>31586034</u>,

PubMed:35114100, PubMed:35831510, PubMed:36528027). In absence of leucine, binds the GATOR subcomplex GATOR2 and prevents mTORC1 signaling (PubMed:18692468, PubMed:25263562, PubMed:25457612,

PubMed:<u>26449471</u>, PubMed:<u>26586190</u>, PubMed:<u>26612684</u>, PubMed:<u>31586034</u>, PubMed:<u>35114100</u>, PubMed:<u>35831510</u>,

PubMed:<u>36528027</u>). Binding of leucine to SESN2 disrupts its interaction with GATOR2 thereby activating the TORC1 signaling pathway (PubMed:<u>26449471</u>,

PubMed:26586190, PubMed:35114100, PubMed:35831510,

PubMed:36528027). This stress-inducible metabolic regulator also plays a role in protection against oxidative and genotoxic stresses. May negatively regulate protein translation in response to endoplasmic reticulum stress, via mTORC1 (PubMed:24947615). May positively regulate the transcription by NFE2L2 of genes involved in the response to oxidative stress by facilitating the SQSTM1-mediated autophagic degradation of KEAP1 (PubMed:23274085). May also mediate TP53 inhibition of TORC1 signaling upon genotoxic stress (PubMed:18692468). Moreover, may prevent the accumulation of reactive oxygen species (ROS) through the alkylhydroperoxide reductase activity born by the N- terminal domain of the protein (PubMed:26612684). Was originally

reported to contribute to oxidative stress resistance by reducing PRDX1

(PubMed:<u>15105503</u>). However, this could not be confirmed

(PubMed:<u>19113821</u>).

Cellular Location Cytoplasm.

Tissue Location Widely expressed..

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.