

Complement C9 Rabbit mAb

Catalog # AP77424

Product Information

Application	WB, IHC-P, IP
Primary Accession	P02748
Reactivity	Human
Host	Rabbit
Clonality	Monoclonal Antibody
Isotype	IgG
Conjugate	Unconjugated
Immunogen	A synthesized peptide derived from human C9
Purification	Affinity Chromatography
Calculated MW	63173

Additional Information

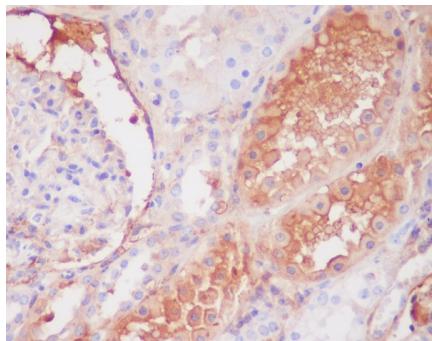
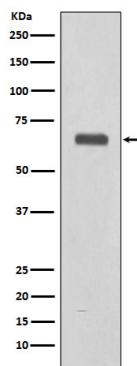
Gene ID	735
Other Names	C9
Dilution	WB~~1/500-1/1000 IHC-P~~N/A IP~~N/A
Format	Liquid in 10mM PBS, pH 7.4, 150mM sodium chloride, 0.05% BSA, 0.02% sodium azide and 50% glycerol.
Storage	Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Protein Information

Name	C9 {ECO:0000303 PubMed:4018030, ECO:0000312 HGNC:HGNC:1358}
Function	Pore-forming component of the membrane attack complex (MAC), a multiprotein complex activated by the complement cascade, which inserts into a target cell membrane and forms a pore, leading to target cell membrane rupture and cell lysis (PubMed: 22832194 , PubMed: 26841837 , PubMed: 26841934 , PubMed: 27052168 , PubMed: 30552328 , PubMed: 6177822 , PubMed: 9212048 , PubMed: 9634479). The MAC is initiated by proteolytic cleavage of C5 into complement C5b in response to the classical, alternative, lectin and GZMK complement pathways (PubMed: 39914456 , PubMed: 39814882 , PubMed: 9212048 , PubMed: 9634479). The complement pathways consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system (PubMed: 9212048 , PubMed: 9634479). Constitutes the pore-forming subunit of the MAC complex: during MAC assembly, C9 associates with the C5b8 intermediate complex, and polymerizes to complete the pore

(PubMed:[26841934](#), PubMed:[30111885](#), PubMed:[30552328](#),
PubMed:[34752492](#), PubMed:[4055801](#), PubMed:[6177822](#)).

Cellular Location



Secreted. Target cell membrane; Multi-pass membrane protein.
Note=Secreted as soluble monomer (PubMed:26841934, PubMed:30111885, PubMed:4055801, PubMed:9634479) Oligomerizes at target membranes, forming a pre-pore (PubMed:26841934, PubMed:30111885, PubMed:31061395, PubMed:4055801, PubMed:9634479). A conformation change then leads to the formation of a 100 Angstrom diameter pore (PubMed:26841934, PubMed:30111885, PubMed:31061395, PubMed:4055801, PubMed:9634479).

Tissue Location

Plasma (at protein level).

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.