ACADM Rabbit mAb Catalog # AP78154 #### **Product Information** **Application** WB, IHC-P, IF, ICC, IP Primary Accession P11310 Reactivity Rat, Human, Mouse **Host** Rabbit **Clonality** Monoclonal Antibody **Isotype** IgG **Conjugate** Unconjugated **Immunogen** A synthesized peptide derived from human ACADM **Purification** Affinity Chromatography Calculated MW 46588 ### **Additional Information** Gene ID 34 Other Names ACADM **Dilution** WB~~1/500-1/1000 IHC-P~~N/A IF~~1:50~200 ICC~~N/A IP~~N/A Format Liquid in 10mM PBS, pH 7.4, 150mM sodium chloride, 0.05% BSA, 0.02% sodium azide and 50% glycerol. **Storage** Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles. #### **Protein Information** Name ACADM (HGNC:89) **Function** Medium-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (PubMed:<u>1970566</u>, PubMed:<u>21237683</u>, PubMed:<u>2251268</u>, PubMed:<u>8823175</u>). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl-CoA (PubMed:2251268). Electron transfer flavoprotein (ETF) is the electron acceptor that transfers electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (PubMed:15159392, PubMed:25416781). Among the different mitochondrial acyl-CoA dehydrogenases, medium-chain specific acyl-CoA dehydrogenase acts specifically on acyl-CoAs with saturated 6 to 12 carbons long primary chains (PubMed:1970566, PubMed:21237683, PubMed:2251268, Mitochondrion matrix # **Images** Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.