

MAP3K9 Antibody (N-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7963a

Product Information

ApplicationIHC-P, WB, EPrimary AccessionP80192Other AccessionQ3U1V8

Reactivity Human, Mouse

Predicted Mouse
Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 121895
Antigen Region 159-189

Additional Information

Gene ID 4293

Other Names Mitogen-activated protein kinase kinase kinase 9, Mixed lineage kinase 1,

MAP3K9, MLK1, PRKE1

Target/Specificity This MAP3K9 antibody is generated from rabbits immunized with a KLH

conjugated synthetic peptide between 159-189 amino acids from the

N-terminal region of human MAP3K9.

Dilution IHC-P~~1:100~500 WB~~1:1000 E~~Use at an assay dependent concentration.

Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide.

This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation

followed by dialysis against PBS.

Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions MAP3K9 Antibody (N-term) is for research use only and not for use in

diagnostic or therapeutic procedures.

Protein Information

Name MAP3K9

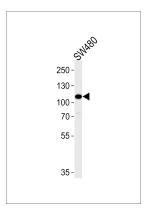
Synonyms MLK1, PRKE1

Function Serine/threonine kinase which acts as an essential component of the MAP

kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis.

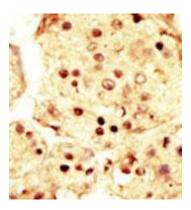
Tissue Location

Expressed in epithelial tumor cell lines of colonic, breast and esophageal origin.


Background

Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The STE group (homologs of yeast Sterile 7, 11, 20 kinases) consists of 50 kinases related to the mitogen-activated protein kinase (MAPK) cascade families (Ste7/MAP2K, Ste11/MAP3K, and Ste20/MAP4K). MAP kinase cascades, consisting of a MAPK and one or more upstream regulatory kinases (MAPKKs) have been best characterized in the yeast pheromone response pathway. Pheromones bind to Ste cell surface receptors and activate yeast MAPK pathway.

References


Dorow, D.S., et al., Eur. J. Biochem. 213(2):701-710 (1993).

Images

MAP3K9 Antibody (N-term) (Cat. #AP7963a) western blot analysis in SW480 cell line lysates (35ug/lane). This demonstrates the MAP3K9 antibody detected the MAP3K9 protein (arrow).

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.