

Phospho-LRRK2 (S935) Antibody

Rabbit mAb Catalog # AP90287

Product Information

Application	WB, IF, ICC
Primary Accession	<u>Q5S007</u>
Reactivity	Human, Mouse
Clonality	Monoclonal
Other Names	AURA17;Dardarin; LRRK2; LRRK 2; PARK8; RIPK7; ROCO2;
lsotype	Rabbit IgG
Host	Rabbit
Calculated MW	286103

Additional Information

Dilution Purification Immunogen Description	WB 1:500~1:1000 ICC/IF 1:50~1:200 Affinity-chromatography A synthesized peptide derived from human Phospho-LRRK2 (S935) The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes. Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose 6 phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner. Regulates neuronal process morphology in the
Storage Condition and Buffer	intact central nervous system (CNS). Plays a role in synaptic vesicle trafficking. Phosphorylates PRDX3. Has GTPase activity. May play a role in the phosphorylation of proteins central to Parkinson disease. Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Protein Information

Name	LRRK2
Synonyms	PARK8
Function	Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed: <u>17114044</u> , PubMed: <u>20949042</u> , PubMed: <u>21850687</u> , PubMed: <u>22012985</u> , PubMed: <u>23395371</u> , PubMed: <u>24687852</u> , PubMed: <u>25201882</u> , PubMed: <u>26014385</u> , PubMed: <u>26824392</u> , PubMed: <u>27830463</u> , PubMed: <u>28720718</u> , PubMed: <u>29125462</u> , PubMed: <u>29127255</u> , PubMed: <u>29212815</u> , PubMed: <u>30398148</u> , PubMed: <u>30635421</u>). Is a key regulator

of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed: 26824392, PubMed: 28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:<u>38127736</u>). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed: 26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:<u>17114044</u>). Plays a role in synaptic vesicle trafficking (PubMed:<u>24687852</u>). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed: 25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed: 22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:<u>28720718</u>). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed: 26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:<u>29212815</u>). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed: 30209220, PubMed:38227290).

Cellular Location

Cytoplasmic vesicle. Perikaryon. Golgi apparatus membrane; Peripheral membrane protein. Cell projection, axon. Cell projection, dendrite. Endoplasmic reticulum membrane; Peripheral membrane protein. Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane. Endosome {ECO:0000250|UniProtKB:Q5S006}. Lysosome Mitochondrion outer membrane; Peripheral membrane protein. Cytoplasm, cytoskeleton. Cytoplasmic vesicle, phagosome {ECO:0000250|UniProtKB:Q5S006}. Note=Colocalized with RAB29 along tubular structures emerging from Golgi apparatus (PubMed:23395371, PubMed:38127736). Localizes to endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER) (PubMed:25201882). Detected on phagosomes and stressed lysosomes but not detected on autophagosomes induced by starvation (By similarity). Recruitment to stressed lysosomes is dependent on the ATG8 conjugation system composed of ATG5, ATG12 and ATG16L1 and leads to lysosomal stress-induced activation of LRRK2 (By similarity) {ECO:0000250|UniProtKB:Q5S006, ECO:0000269|PubMed:23395371, ECO:0000269 | PubMed: 25201882, ECO: 0000269 | PubMed: 38127736 }

Tissue Location

Expressed in pyramidal neurons in all cortical laminae of the visual cortex, in neurons of the substantia nigra pars compacta and caudate putamen (at protein level). Expressed in neutrophils (at protein level) (PubMed:29127255). Expressed in the brain. Expressed throughout the adult brain, but at a lower level than in heart and liver. Also expressed in placenta, lung, skeletal muscle, kidney and pancreas. In the brain, expressed in the cerebellum, cerebral cortex, medulla, spinal cord occipital pole, frontal lobe, temporal lobe and putamen. Expression is particularly high in brain dopaminoceptive areas.

Images

Western blot analysis of Filamin A phosphorylation expression in WT-LRRK2 cell lysate treated LRRK2.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.