

IKK beta Antibody

Rabbit mAb Catalog # AP90639

Product Information

Application WB, IP **Primary Accession** 014920

Reactivity Human, Mouse Clonality Monoclonal

Other Names EC 2.7.11.10; I-kappa-B kinase 2; I-kappa-B-kinase beta; IKK-B; IKK-beta; IKK2;

IKKB; IkBKB; NFKBIKB; Nuclear factor NF-kappa-B inhibitor kinase beta; kinase

IKK-beta;

IsotypeRabbit IgGHostRabbitCalculated MW86564

Additional Information

Dilution WB 1:500~1:2000 IP 1:50 **Purification** Affinity-chromatography

Immunogen A synthesized peptide derived from human IKK beta

Description The NF-κB/Rel transcription factors are present in the cytosol in an inactive

state, complexed with the inhibitory IkB proteins (1-3). Most agents that

activate NF-κB do so through a common pathway based on

phosphorylation-induced, proteasome-mediated degradation of IkB (3-7). The key regulatory step in this pathway involves activation of a high molecular weight IkB kinase (IKK) complex whose catalysis is generally carried out by

three tightly associated IKK subunits.

Storage Condition and Buffer Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium

azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.

Avoid freeze / thaw cycle.

Protein Information

Name IKBKB

Synonyms IKKB

Function Serine kinase that plays an essential role in the NF-kappa-B signaling

pathway which is activated by multiple stimuli such as inflammatory

cytokines, bacterial or viral products, DNA damages or other cellular stresses

(PubMed: 20434986, PubMed: 20797629, PubMed: 21138416,

PubMed:30337470, PubMed:9346484). Acts as a part of the canonical IKK

complex in the conventional pathway of NF-kappa-B activation

(PubMed:<u>9346484</u>). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:<u>20434986</u>, PubMed:<u>20797629</u>, PubMed:<u>21138416</u>,

PubMed: 9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed: 20434986, PubMed: <u>20797629</u>, PubMed: <u>21138416</u>, PubMed: <u>9346484</u>). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed:11297557. PubMed: 14673179, PubMed: 20410276, PubMed: 21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed: 11297557, PubMed: 20410276, PubMed: 21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed: 15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed:17213322, PubMed: 19716809). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF- mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylates STAT1 at 'Thr-749' which restricts interferon signaling and anti-inflammatory responses and promotes innate inflammatory responses (PubMed:38621137). IKBKB-mediated phosphorylation of STAT1 at 'Thr-749' promotes binding of STAT1 to the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). It also promotes binding of STAT1 to the IL12B promoter and activation of IL12B transcription (PubMed:32209697).

Cellular Location

Cytoplasm. Nucleus. Membrane raft. Note=Colocalized with DPP4 in membrane rafts.

Tissue Location

Highly expressed in heart, placenta, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis and peripheral blood

Images

Western blot analysis of IKK beta expression in Daudi cell lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.