

AMPK gamma 1 Antibody

Rabbit mAb Catalog # AP90778

Product Information

Application Primary Accession Reactivity Clonality Other Names	WB, FC, IP <u>P54619</u> Rat, Human, Mouse Monoclonal AMP activated protein kinase noncatalytic gamma 1 subunit; AMPK gamma 1 chain; AMPK subunit gamma-1; AMPKg; PRKAG1;
lsotype	Rabbit IgG
Host	Rabbit
Calculated MW	37579

Additional Information

Dilution Purification Immunogen	WB 1:1000~1:2000 IP 1:20 FC 1:20 Affinity-chromatography A synthesized peptide derived from human AMPK gamma 1
Description	AMPK is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis.Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and
Storage Condition and Buffer	TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS. Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Protein Information

Name

PRKAG1

FunctionAMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy
sensor protein kinase that plays a key role in regulating cellular energy
metabolism (PubMed:21680840, PubMed:24563466). In response to
reduction of intracellular ATP levels, AMPK activates energy-producing
pathways and inhibits energy-consuming processes: inhibits protein,
carbohydrate and lipid biosynthesis, as well as cell growth and proliferation
(PubMed:21680840, PubMed:24563466). AMPK acts via direct
phosphorylation of metabolic enzymes, and by longer-term effects via
phosphorylation of transcription regulators (PubMed:21680840,
PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling
the actin cytoskeleton; probably by indirectly activating myosin
(PubMed:21680840, PubMed:24563466). Gamma non-catalytic subunit
mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK:

AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:<u>21680840</u>, PubMed:<u>24563466</u>). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:<u>21680840</u>, PubMed:<u>24563466</u>). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:<u>21680840</u>, PubMed:<u>24563466</u>).

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.