

GluR1 Antibody

Rabbit mAb Catalog # AP90802

Product Information

Application Primary Accession Reactivity Clonality Other Names	WB, IHC, IP <u>P42261</u> Rat, Human, Mouse Monoclonal Glutamate receptor 1; GluR-1; AMPA-selective glutamate receptor 1; GluR-A; GluR-K1; GluRA; GluRK1; Glutamate receptor ionotropic, AMPA 1; GluA1; GRIA1; GLUH1; GLUR1;
lsotype	Rabbit IgG
Host	Rabbit
Calculated MW	101506

Additional Information

Dilution Purification Immunogen Description	WB 1:1000~1:2000 IHC 1:50~1:200 IP 1:50 Affinity-chromatography A synthesized peptide derived from human GluR1 AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity.
Storage Condition and Buffer	

Protein Information

Name

GRIA1 (HGNC:4571)

Function

Ionotropic glutamate receptor that functions as a ligand- gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:<u>1311100</u>, PubMed:<u>20805473</u>, PubMed:<u>21172611</u>, PubMed:<u>28628100</u>, PubMed:<u>35675825</u>). L- glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor

	then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG2 or CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L- glutamate (PubMed: <u>21172611</u>). Resensitization is blocked by CNIH2 through interaction with CACNG8 in the CACNG8-containing AMPA receptors complex (PubMed: <u>21172611</u>). Calcium (Ca(2+)) permeability depends on subunits composition and, heteromeric channels containing edited GRIA2 subunit are calcium-impermeable. Also permeable to other divalents cations such as strontium(2+) and magnesium(2+) and monovalent cations such as potassium(1+) and lithium(1+) (By similarity).
Cellular Location	Cell membrane; Multi-pass membrane protein. Endoplasmic reticulum membrane {ECO:000250 UniProtKB:P19490}; Multi-pass membrane protein {ECO:000250 UniProtKB:P19490}. Postsynaptic cell membrane; Multi-pass membrane protein. Postsynaptic density membrane {ECO:000250 UniProtKB:P23818}; Multi-pass membrane protein {ECO:000250 UniProtKB:P23818}. Cell projection, dendrite {ECO:000250 UniProtKB:P23818}. Cell projection, dendritic spine {ECO:000250 UniProtKB:P23818}. Cell projection, dendritic spine {ECO:000250 UniProtKB:P23818}. Early endosome membrane {ECO:000250 UniProtKB:P19490}; Multi-pass membrane protein {ECO:000250 UniProtKB:P19490}. Recycling endosome membrane {ECO:000250 UniProtKB:P19490}. Presynapse {ECO:000250 UniProtKB:P23818}. Synapse {ECO:000250 UniProtKB:P23818} Note=Interaction with CACNG2, CNIH2 and CNIH3 promotes cell surface expression. Colocalizes with PDLIM4 in early endosomes. Displays a somatodendritic localization and is excluded from axons in neurons (By similarity). Localized to cone photoreceptor pedicles (By similarity) {ECO:000250 UniProtKB:P23818}
Tissue Location	Widely expressed in brain.

Images

Western blot analysis of GluR1 expression in Human brain lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.