

Insulin Receptor Antibody

Rabbit mAb Catalog # AP90804

Product Information

Application Primary Accession Reactivity Clonality Other Names	WB, IF, ICC <u>P06213</u> Rat, Human, Mouse Monoclonal CD220; HHF5; human insulin receptor; Insr; Insulin receptor subunit beta; IR 1; IR;
lsotype	Rabbit IgG
Host	Rabbit
Calculated MW	156333

Additional Information

Dilution Purification Immunogen	WB 1:1000~1:2000 ICC/IF 1:50~1:200 Affinity-chromatography A synthesized peptide derived from human Insulin Receptor
Description	Insulin Receptor is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues; Insulin binding to IR induces phosphorylation of intracellular tyrosine kinase domains and recruitment of multiple SH2 and SH3 domain-containing intracellular proteins that serve as signaling intermediates for pleiotropic effects of insulin.
Storage Condition and Buffer	Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle.

Protein Information

Name

INSR

FunctionReceptor tyrosine kinase which mediates the pleiotropic actions of insulin.
Binding of insulin leads to phosphorylation of several intracellular substrates,
including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other
signaling intermediates. Each of these phosphorylated proteins serve as
docking proteins for other signaling proteins that contain Src-homology-2
domains (SH2 domain) that specifically recognize different phosphotyrosine
residues, including the p85 regulatory subunit of PI3K and SHP2.
Phosphorylation of IRSs proteins lead to the activation of two main signaling
pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the
metabolic actions of insulin, and the Ras- MAPK pathway, which regulates
expression of some genes and cooperates with the PI3K pathway to control
cell growth and differentiation. Binding of the SH2 domains of PI3K to

	phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin- stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low a
Cellular Location	Cell membrane {ECO:0000250 UniProtKB:P15208}; Single-pass type I membrane protein. Late endosome {ECO:0000250 UniProtKB:P15208}. Lysosome {ECO:0000250 UniProtKB:P15208}. Note=Binding of insulin to INSR induces internalization and lysosomal degradation of the receptor, a means for down-regulating this signaling pathway after stimulation. In the presence of SORL1, internalized INSR molecules are redirected back to the cell surface, thereby preventing their lysosomal catabolism and strengthening insulin signal reception. {ECO:0000250 UniProtKB:P15208}
Tissue Location	Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas

Images

Western blot analysis of Insulin Receptor expression in HeLa cell lysate.

Image not found : 202311/AP90804-IF.jpg

Immunofluorescent analysis of BxPC-3 cells, using Insulin Receptor Antibody.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.