

Phospho-Histone H2A.X (S139) Antibody

Rabbit mAb Catalog # AP91004

Product Information

Application Primary Accession	WB, IHC, IF, ICC, IP, IHF <u>P16104</u>
Reactivity	Rat, Human, Mouse
Clonality	Monoclonal
Other Names	H2A.X; H2AFX; H2a/x; HIST5-2AX; Histone H2A.X;
Isotype	Rabbit IgG
Host	Rabbit
Calculated MW	15145

Additional Information

Dilution	WB 1:5000~1:10000 IHC 1:50~1:200 ICC 1:50~1:200 IP 1:30
Purification	Affinity-chromatography
Immunogen	A synthesized peptide derived from human Phospho-Histone H2A.X (S139)
Description	Variant histone H2A which replaces conventional H2A in a subset of
	nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting
	DNA accessibility to the cellular machineries which require DNA as a
	template. Histones thereby play a central role in transcription regulation, DNA
	repair, DNA replication and chromosomal stability.
Storage Condition and Buffer	Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium
	azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.
	Avoid freeze / thaw cycle.

Protein Information

Name	H2AX (<u>HGNC:4739</u>)
Function	Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post- translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation.
Cellular Location	Nucleus. Chromosome

KDa 250	Western blot analysis of HistoneH2A.X phosphorylation expression in Jurkat cell lysate treated with etoposide.
Image not found : 202311/AP91004-IHC.jpg	Immunohistochemical analysis of paraffin-embedded mouse liver, using Phospho-Histone H2A.X (S139) Antibody.
Image not found : 202311/AP91004-IF.jpg	Immunofluorescent analysis of HeLa cells treated with H2O2, using Phospho-Histone H2A.X (S139) Antibody.
Image not found : 202311/AP91004-wb6.jpg	SRSF1 Prevents DNA Damage and Promotes Tumorigenesis through Regulation of DBF4B Pre-mRNA SplicingCell Reports

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.